skip to main content

Search for: All records

Creators/Authors contains: "Anslyn, Eric V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract: A colorimetric indicator displacement assay (IDA) amenable to high-throughput experimentation was developed to determine the percentage of cis and trans alkenes. Using 96-well plates two steps are performed: a reaction plate for dihydroxylation of the alkenes followed by an IDA screening plate consisting of an indicator and a boronic acid. The dihydroxylation generates either erythro or threo vicinal diols from cis or trans alkenes, depending upon their syn- or antiaddition mechanisms. Threo diols preferentially associate with the boronic acid due to the creation of more stable boronate esters, thus displacing the indicator to a greater extent. The generality of the protocol was demonstrated using seven sets of cis and trans alkenes. Blind mixtures of cis and trans alkenes were made, resulting in an average error of 2% in the percentage of cis or trans alkenes, and implementing E2 and Wittig reactions gave errors of 3%. Furthermore, we developed variants of the IDA for which the color may be tuned to optimize the response for the human eye.
  2. A kinetic analysis of a “declick” reaction is described. Compound 1 , previously reported to couple an amine and a thiol ( i.e. “click”) under mild aqueous conditions to create 2 , undergoes release of the unaltered coupling partners upon triggering with dithiothreitol ( DTT ). In the study reported herein various aniline derivatives possessing para-electron donating and withdrawing groups were used as the amines. UV/vis spectroscopy of the declick reaction shows time-dependent spectra lacking isosbestic points, implying a multi-step mechanism. Global data fitting using numerical integration of rate equations and singular value decomposition afforded the spectra and time-dependence of each species, as well as rate constants for each step. The kinetic analysis reveals a multi-step process with an intermediate where both thiols of DTT have added prior to expulsion of the aniline leaving group, followed by rearrangement to the final product. Hammett plots show a negative rho value on two of the steps, indicating positive charge building ( i.e. reduction of a negative charge) in the step leading to the intermediate and its rate-determining breakdown. Overall, the kinetic study reported herein gives a complete mechanistic picture of the declick reaction.
  3. We demonstrate that bisulfite can be used for reduction of a highly electrophilic anthraquinone derivative, N,N ′-dimethyl-2,6-diaza-9,10-anthraquinonediium (DAAQ), and subsequent autoxidation generates an equivalent of hydrogen peroxide. The mechanism for DAAQ reduction by bisulfite, DAAQ electrochemistry, and use of a simple test strip assay for H 2 O 2 , are described.