skip to main content


Search for: All records

Creators/Authors contains: "Anuyah, Oghenemaro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent breakthroughs in deep-learning (DL) approaches have resulted in the dynamic generation of trace links that are far more accurate than was previously possible. However, DL-generated links lack clear explanations, and therefore non-experts in the domain can find it difficult to understand the underlying semantics of the link, making it hard for them to evaluate the link's correctness or suitability for a specific software engineering task. In this paper we present a novel NLP pipeline for generating and visualizing trace link explanations. Our approach identifies domain-specific concepts, retrieves a corpus of concept-related sentences, mines concept definitions and usage examples, and identifies relations between cross-artifact concepts in order to explain the links. It applies a post-processing step to prioritize the most likely acronyms and definitions and to eliminate non-relevant ones. We evaluate our approach using project artifacts from three different domains of interstellar telescopes, positive train control, and electronic healthcare systems, and then report coverage, correctness, and potential utility of the generated definitions. We design and utilize an explanation interface which leverages concept definitions and relations to visualize and explain trace link rationales, and we report results from a user study that was conducted to evaluate the effectiveness of the explanation interface. Results show that the explanations presented in the interface helped non-experts to understand the underlying semantics of a trace link and improved their ability to vet the correctness of the link. 
    more » « less
  2. Children use popular web search tools, which are generally designed for adult users. Because children have different developmental needs than adults, these tools may not always adequately support their search for information. Moreover, even though search tools offer support to help in query formulation, these too are aimed at adults and may hinder children rather than help them. This calls for the examination of existing technologies in this area, to better understand what remains to be done when it comes to facilitating query-formulation tasks for young users. In this paper, we investigate interaction elements of query formulation--including query suggestion algorithms--for children. The primary goals of our research efforts are to: (i) examine existing plug-ins and interfaces that explicitly aid children's query formulation; (ii) investigate children's interactions with suggestions offered by a general-purpose query suggestion strategy vs. a counterpart designed with children in mind; and (iii) identify, via participatory design sessions, their preferences when it comes to tools / strategies that can help children find information and guide them through the query formulation process. Our analysis shows that existing tools do not meet children's needs and expectations; the outcomes of our work can guide researchers and developers as they implement query formulation strategies for children. 
    more » « less