skip to main content

Search for: All records

Creators/Authors contains: "Apley, Daniel W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Data-driven design shows the promise of accelerating materials discovery but is challenging due to the prohibitive cost of searching the vast design space of chemistry, structure, and synthesis methods. Bayesian optimization (BO) employs uncertainty-aware machine learning models to select promising designs to evaluate, hence reducing the cost. However, BO with mixed numerical and categorical variables, which is of particular interest in materials design, has not been well studied. In this work, we survey frequentist and Bayesian approaches to uncertainty quantification of machine learning with mixed variables. We then conduct a systematic comparative study of their performances in BO using a popular representative model from each group, the random forest-based Lolo model (frequentist) and the latent variable Gaussian process model (Bayesian). We examine the efficacy of the two models in the optimization of mathematical functions, as well as properties of structural and functional materials, where we observe performance differences as related to problem dimensionality and complexity. By investigating the machine learning models’ predictive and uncertainty estimation capabilities, we provide interpretations of the observed performance differences. Our results provide practical guidance on choosing between frequentist and Bayesian uncertainty-aware machine learning models for mixed-variable BO in materials design. 
    more » « less
    Free, publicly-accessible full text available December 1, 2023
  2. Many two-level nested simulation applications involve the conditional expectation of some response variable, where the expected response is the quantity of interest, and the expectation is with respect to the inner-level random variables, conditioned on the outer-level random variables. The latter typically represent random risk factors, and risk can be quantified by estimating the probability density function (pdf) or cumulative distribution function (cdf) of the conditional expectation. Much prior work has considered a naïve estimator that uses the empirical distribution of the sample averages across the inner-level replicates. This results in a biased estimator, because the distribution of the sample averages is over-dispersed relative to the distribution of the conditional expectation when the number of inner-level replicates is finite. Whereas most prior work has focused on allocating the numbers of outer- and inner-level replicates to balance the bias/variance tradeoff, we develop a bias-corrected pdf estimator. Our approach is based on the concept of density deconvolution, which is widely used to estimate densities with noisy observations but has not previously been considered for nested simulation problems. For a fixed computational budget, the bias-corrected deconvolution estimator allows more outer-level and fewer inner-level replicates to be used, which substantially improves the efficiency of the nested simulation. 
    more » « less
  3. Abstract

    Gaussian process (GP) models have been extended to emulate expensive computer simulations with both qualitative/categorical and quantitative/continuous variables. Latent variable (LV) GP models, which have been recently developed to map each qualitative variable to some underlying numerical LVs, have strong physics‐based justification and have achieved promising performance. Two versions use LVs in Cartesian (LV‐Car) space and hyperspherical (LV‐sph) space, respectively. Despite their success, the effects of these different LV structures are still poorly understood. This article illuminates this issue with two contributions. First, we develop a theorem on the effect of the ranks of the qualitative factor correlation matrices of mixed‐variable GP models, from which we conclude that the LV‐sph model restricts the interactions between the input variables and thus restricts the types of response surface data with which the model can be consistent. Second, following a rank‐based perspective like in the theorem, we propose a new alternative model named LV‐mix that combines the LV‐based correlation structures from both LV‐Car and LV‐sph models to achieve better model flexibility than them. Through extensive case studies, we show that LV‐mix achieves higher average accuracy compared with the existing two.

    more » « less