skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arabi, Shiva"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Land surface temperature (LST) is crucial for understanding earth system processes. We expanded the Advanced Baseline Imager Live Imaging of Vegetated Ecosystems (ALIVE) framework to estimate LST in near‐real‐time for both cloudy and clear sky conditions at a five‐minute resolution. We compared two machine learning (ML) models, Long Short‐Term Memory (LSTM) networks and Gradient Boosting Regressor (GBR), using top‐of‐atmosphere observations from the Advanced Baseline Imager (ABI) on the GOES‐16 satellite against observations from hundreds of observation sites for a five‐year period. Long Short‐Term Memory outperformed GBR, especially at coarser resolutions and under challenging conditions, with a clear sky R2of 0.96 (RMSE 2.31K) and a cloudy sky R2of 0.83 (RMSE 4.10K) across CONUS, based on 10‐repeat Leave‐One‐Out Cross‐Validation (LOOCV). GBR maintained high accuracy and ran 5.3 times faster, with only a 0.01–0.02 R2drop. Feature importance revealed infrared bands were key in both models, with LSTM adapting dynamically to atmospheric changes, while GBR utilized more time information in cloudy conditions. A comparative analysis against the physically based ABILSTproduct showed strong agreement in winter, particularly under clear sky conditions, while also highlighting the challenges of summer LST estimation due to increased thermal variability. This study underscores the strengths and limitations of data‐driven models for LST estimation and suggests potential pathways for integrating ML models to enhance the accuracy and coverage of LST products. 
    more » « less