Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 13, 2026
-
Since the advent of mobile communication, the growth in demand for wireless communication devices and associated spectrum needs has been unstoppable. As a result, due to limited spectrum availability and historically inefficient management of assigned frequencies, spectrum sharing has steadily grown in importance and become a necessary solution to various capacity constraints. To support new developments in spectrum sharing, research in spectrum monitoring and spectrum utilization have become most valuable. GNU Radio offers a compelling opportunity to quickly develop and prototype new research in spectrum monitoring, sharing, and related radio frequency research that can support future deployments. GNU Radio’s packaged capabilities combined with its compatibility with a multitude of Software Defined Radio (SDR) hardware OEMs allow spectrum sharing research to be conducted nimbly and rapidly. To improve spectrum sharing and management, this research used GNU Radio in conjunction with Ettus USRP SDRs to collect I/Q data across the CU Boulder campus in regular intervals over 4 weeks, to monitor changes in the power levels recorded across 1 indoor and 10 outdoor locations. The results show that a simple sensor consisting of an SDR and a Raspberry Pi is capable of tracking changes in Wi-Fi signal strengths measured in outdoor environments. With calibration and careful hardware design such a platform could also be used for broader spectrum monitoring applications.more » « less
-
As radio spectrum becomes increasingly scarce, coexistence and bidirectional sharing between active and passive systems becomes a crucial target. In the past, spectrum regulations conferred radio astronomy a status on par with active services, thereby protecting their extreme sensitivity against any harmful interference. However, passive systems are likely to lose exclusive allocations as capacity constraints for active systems increase. The resulting increase in ambient radio frequency noise from various terrestrial and non-terrestrial emitters can only be mitigated with informed collaboration between active and passive users. While coexistence using time-division spectrum access has been proposed in the past, a more dynamic approach following the CBRS sharing principle promises greater spectral occupancy and efficiency, enabled by a spectrum access system capable of constantly monitoring the ambient RF environment. Instead of simply minimizing the potential for any ”harmful” interference to passive users, the goal is to use good engineering to enable sharing between active and passive users. To this end, this research created a Software Defined Radio (SDR)-based testbed at the the Hat Creek Radio Observatory to quantitatively characterize the radio-frequency environment, and flag potential sources of radio frequency interference in the vicinity of the Allen Telescope Array. Sensor validation was carried out via data analysis of I/Q data collected in well-characterized RF bands. Results so far from ground and drone-based surveys are consistent with the expected sources of interference, based on both the deployment of static RF transmitters in the Hat Creek/Redding area as well as the interference detected in telescope observations themselves.more » « less
-
Free, publicly-accessible full text available May 12, 2026
-
Abstract Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counterintuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfvén waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold,α= 2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: preflare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine thatα= 1.63 ± 0.03. This is below the critical threshold, suggesting that Alfvén waves are an important driver of coronal heating.more » « less
An official website of the United States government
