skip to main content


Search for: All records

Creators/Authors contains: "Aragam, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of reconstructing a causal graphical model from data in the presence of latent variables. The main problem of interest is recovering the causal structure over the latent variables while allowing for general, potentially nonlinear dependencies. In many practical problems, the dependence between raw observations (e.g. pixels in an image) is much less relevant than the dependence between certain high-level, latent features (e.g. concepts or objects), and this is the setting of interest. We provide conditions under which both the latent representations and the underlying latent causal model are identifiable by a reduction to a mixture oracle. These results highlight an intriguing connection between the well-studied problem of learning the order of a mixture model and the problem of learning the bipartite structure between observables and unobservables. The proof is constructive, and leads to several algorithms for explicitly reconstructing the full graphical model. We discuss efficient algorithms and provide experiments illustrating the algorithms in practice. 
    more » « less
  2. Motivated by problems in data clustering, we establish general conditions under which families of nonparametric mixture models are identifiable, by introducing a novel framework involving clustering overfitted parametric (i.e. misspecified) mixture models. These identifiability conditions generalize existing conditions in the literature, and are flexible enough to include for example mixtures of Gaussian mixtures. In contrast to the recent literature on estimating nonparametric mixtures, we allow for general nonparametric mixture components, and instead impose regularity assumptions on the underlying mixing measure. As our primary application, we apply these results to partition-based clustering, generalizing the notion of a Bayes optimal partition from classical parametric model-based clustering to nonparametric settings. Furthermore, this framework is constructive so that it yields a practical algorithm for learning identified mixtures, which is illustrated through several examples on real data. The key conceptual device in the analysis is the convex, metric geometry of probability measures on metric spaces and its connection to the Wasserstein convergence of mixing measures. The result is a flexible framework for nonparametric clustering with formal consistency guarantees. 
    more » « less
  3. We develop a framework for learning sparse nonparametric directed acyclic graphs (DAGs) from data. Our approach is based on a recent algebraic characterization of DAGs that led to a fully continuous program for scorebased learning of DAG models parametrized by a linear structural equation model (SEM). We extend this algebraic characterization to nonparametric SEM by leveraging nonparametric sparsity based on partial derivatives, resulting in a continuous optimization problem that can be applied to a variety of nonparametric and semiparametric models including GLMs, additive noise models, and index models as special cases. Unlike existing approaches that require specific modeling choices, loss functions, or algorithms, we present a completely general framework that can be applied to general nonlinear models (e.g. without additive noise), general differentiable loss functions, and generic black-box optimization routines. 
    more » « less