Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Genus Pompholyx Gosse, 1851 (Rotifera; Monogononta; Testudinellidae) comprises three species described from freshwater plankton around the globe. Here we describe a new species of Pompholyx collected from a freshwater pond in Massachusetts, USA. The new species resembles its congeners with respect to the following characters: paired eyespots; a dorsally arched lorica with a dorsal occipital convexity behind the corona; lateral flared and rounded lorica surfaces; a ventral surface bearing an occipital concavity posterior of the mouth; a unique egg-gland system; and the absence of a foot. However, P. faciemlarva sp. n. differs from its congeners in possessing a transverse furrow on both the dorsal and ventral surfaces of the lorica. While the trophi of P. faciemlarva sp. n. generally resemble those of other species of Testudinellidae, they do have a symmetrical pattern of unci teeth (17/17) that differs from Pompholyx sulcata (17–20/18–21, right/left), the only other species in the genus with well-described trophi. The description of this new species enhances the floristic richness of freshwater in North America.more » « less
-
Diapausing embryos of invertebrates represent investments in future populations. Thus, these embryos must be capable of withstanding a variety of environmental assaults. Consequently, their eggshells should be adapted to resist injuries from predators, sediments, or excessive shrinkage if desiccated. To date, there have been no direct nanomechanical measurements of the eggshells of most diapausing invertebrates. Here, we used three approaches to understand how eggshells of two rotifers, a freshwater species (Brachionus calyciflorus) and a brackish water species (B. plicatilis), tolerate harsh conditions: (1) atomic force microscopy to measure elasticity and hardness; (2) transmission electron microscopy to study ultrastructure; (3) scanning electron microscopy to examine surface features. We compare these values to measurements of brine shrimp (Artemia salina) cysts and mosquito (Aedes aegypti) overwintering eggs. Our results revealed that rotifer eggshells are structurally similar and have comparable nanomechanical values. While rotifer eggshells had lower Young’s moduli (ca. 13–16 MPa) and hardness values (1.84–1.85x10-2 GPa) than eggshells of Artemia and Aedes, eggshells of all species were relatively elastic and not particularly resistant to deformation. Pliancy of shells that form egg banks (i.e., Artemia, Brachionus) may be an adaptation to resist cracking under the physical forces of buried sediments. Though there are no obvious relationship between eggshell thickness, ultrastructure, ornamentation, or nanomechanical values in rotifer eggshells, we hypothesize that eggshell chemistry may play an important role in determining elasticity and hardness. Future studies should consider an integrative approach to understand importance of eggshell structure, chemistry, and mechanics in protecting diapausing embryos.more » « less
-
Abstract Freshwater gastrotrichs have a biphasic lifecycle that reputedly involves the production of three types of eggs: apomictic and fast hatching (tachyblastic ova), apomictic and delayed hatching (opsiblastic ova), and plaque‐bearing eggs (potentially derived from mixis). While some details of oogenesis and eggshell structure are known for tachyblastic ova, there are few details on other egg types. Here, we provide the first ultrastructural description of the oviposited opsiblastic eggs of the freshwater gastrotrich,Lepidodermella squamata. Scanning electron microscopy revealed the eggshell surface to be ornamented with long flattened pillar‐like structures centered on polygonal plates that are pitted along their periphery. Transmission electron microscopy showed the pits to lead to a vast labyrinth of tubular spaces and larger cavities throughout the thick apical layer of the shell. The basal layer of the shell is amorphous and connected to a network of fine fibers that traverse an extra‐oocyte space and forms a protective sheet around the uncleaved oocyte. The uncleaved oocyte has a dense layer of peripheral ooplasm surrounding a core of organelles including mitochondria, membrane‐bound secretion granules, endoplasmic reticulum, and a single nucleus in a granular, ribosome‐rich cytoplasm. Secretion granules are the most abundant organelles and presumably contain lipid‐rich yolk that will be used as energy for delayed cleavage, thus functioning in temporal dispersal. These data are compared to the fine structure of invertebrate resting eggs across the phylogenetic spectrum to determine the novelty of opsiblastic egg structure inL. squamata.more » « less
An official website of the United States government
