Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Both ground based magnetometers and ionospheric radars at Earth have frequently detected Ultra Low Frequency (ULF) fluctuations at discrete frequencies extending below one mHz‐range. Many dayside solar wind drivers have been convincingly demonstrated as driver mechanisms. In this paper we investigate and propose an additional, nightside generation mechanism of a low frequency magnetic field fluctuation. We propose that the Moon may excite a magnetic field perturbation of the order of 1 nT at discrete frequencies when it travels through the Earth's magnetotail 4–5 days every month. Our theoretical prediction is supported by a case study of ARTEMIS magnetic field measurements at the lunar orbit in the Earth's magnetotail. ARTEMIS detects statistically significant peaks in magnetic field fluctuation power at frequencies of 0.37–0.47 mHz that are not present in the solar wind.more » « less
-
Abstract The Earth's magnetosphere supports a variety of Magnetohydrodynamic (MHD) normal modes with Ultra Low Frequencies (ULF) including standing Alfvén waves and cavity/waveguide modes. Their amplitudes and frequencies depend in part on the properties of the magnetosphere (size of cavity, wave speed distribution). In this work, we use ∼13 years of Time History of Events and Macroscale Interactions during Substorms satellite magnetic field observations, combined with linearized MHD numerical simulations, to examine the properties of MHD normal modes in the regionL > 5 and for frequencies <80 mHz. We identify persistent normal mode structure in observed dawn sector power spectra with frequency‐dependent wave power peaks like those obtained from simulation ensemble averages, where the simulations assume different radial Alfvén speed profiles and magnetopause locations. We further show with both observations and simulations how frequency‐dependent wave power peaks atL > 5 depend on both the magnetopause location and the location of peaks in the radial Alfvén speed profile. Finally, we discuss how these results might be used to better model radiation belt electron dynamics related to ULF waves.more » « less
-
ABSTRACT This white paper is highly topical as it relates to the upcoming solar wind magnetosphere ionosphere link explorer (SMILE) mission: SMILE is a joint mission between the European Space Agency and the Chinese Academy of Sciences and it aims to build a more complete understanding of the Sun–Earth connection by measuring the solar wind and its dynamic interaction with the magnetosphere. It is a fully funded mission with a projected launch in 2025. This paper outlines a plan for action for SMILE’s first Northern hemisphere winter campaign using ground-based instruments. We outline open questions and which data and techniques can be employed to answer them. The science themes we discuss are: (i) Earth’s magnetosheath, magnetopause, and magnetic cusp impact on the ionospheric cusp region; (ii) defining the relationship between auroral processes, solar wind, and magnetospheric drivers; (iii) understanding the interhemispheric properties of the Earth’s magnetosphere–ionosphere system. We discuss open questions (different to the mission goals) which may be answered using existing ground-based instrumentation together with SMILE data to leverage the maximum scientific return of the mission during the first winter after launch. This paper acts as a resource for planning, and a call to collaborative action for the scientific community.more » « less
-
Key Points Theory and global simulations of magnetopause surface waves' effects on the aurorae, ionosphere, and ground magnetic field are investigated We predict poleward‐moving periodic aurora, convection vortices, and ground pulsations, with larger latitudinal scales than Alfvén modes Amplitudes of all signals peak near the projection of the inner/equatorward edge of the magnetopause rather than the open–closed boundarymore » « less
An official website of the United States government
