Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In the quest for high-energy neutrino sources, the Astrophysical Multimessenger Observatory Network has implemented a new search by combining data from the High Altitude Water Cherenkov (HAWC) Observatory and the Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) neutrino telescope. Using the same analysis strategy as in a previous detector combination of HAWC and IceCube data, we perform a search for coincidences in HAWC and ANTARES events that are below the threshold for sending public alerts in each individual detector. Data were collected between 2015 July and 2020 February with a live time of 4.39 yr. Over this time period, three coincident events with an estimated false-alarm rate of <1 coincidence per year were found. This number is consistent with background expectations.more » « less
-
null (Ed.)Abstract Adopting the Standard Halo Model (SHM) of an isotropic Maxwellian velocity distribution for dark matter (DM) particles in the Galaxy, the most stringent current constraints on their spin-dependent scattering cross-section with nucleons come from the IceCube neutrino observatory and the PICO-60 $$\hbox {C}_3\hbox {F}_8$$ C 3 F 8 superheated bubble chamber experiments. The former is sensitive to high energy neutrinos from the self-annihilation of DM particles captured in the Sun, while the latter looks for nuclear recoil events from DM scattering off nucleons. Although slower DM particles are more likely to be captured by the Sun, the faster ones are more likely to be detected by PICO. Recent N-body simulations suggest significant deviations from the SHM for the smooth halo component of the DM, while observations hint at a dominant fraction of the local DM being in substructures. We use the method of Ferrer et al. (JCAP 1509: 052, 2015) to exploit the complementarity between the two approaches and derive conservative constraints on DM-nucleon scattering. Our results constrain $$\sigma _{\mathrm{SD}} \lesssim 3 \times 10^{-39} \mathrm {cm}^2$$ σ SD ≲ 3 × 10 - 39 cm 2 ( $$6 \times 10^{-38} \mathrm {cm}^2$$ 6 × 10 - 38 cm 2 ) at $$\gtrsim 90\%$$ ≳ 90 % C.L. for a DM particle of mass 1 TeV annihilating into $$\tau ^+ \tau ^-$$ τ + τ - ( $$b\bar{b}$$ b b ¯ ) with a local density of $$\rho _{\mathrm{DM}} = 0.3~\mathrm {GeV/cm}^3$$ ρ DM = 0.3 GeV / cm 3 . The constraints scale inversely with $$\rho _{\mathrm{DM}}$$ ρ DM and are independent of the DM velocity distribution.more » « less