Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This project addresses the disconnect between science, design, and technology and how high school students can benefit from innovative learning experiences in plant science that integrate these disciplines while gaining interest in and skills for future STEM careers. We created a project-based 3D modeling learning module with educators as facilitators and students working in collaborative teams of self-identified science, technophile, and art students. Students created 3D models of plants under research at the Donald Danforth Plant Science Center and learned about the applications of 3D modeling in augmented and virtual reality platforms. They also disseminated their project results through handouts and presentations. We used a mixed-methods approach to assess the impact of implementing this module on students’ learning and interests in STEAM subjects and careers. We found that students are more aware of the intersection of art and design with science and gained literacy in plant science, design, and technology. The students also gained 21st century skills such as collaboration, communication, creative thinking, and problem-solving and showed more interest in STEAM subjects and careers. This project contributes to the body of knowledge on theory, best practices, and practical technological applications in STEAM education.more » « less
- 
            To be successful in their future careers, students must be able to process information, devise creative solutions, and apply previous knowledge to new situations. Learning through only traditional teaching practices that rely heavily on lecture format and memorization is insufficient to prepare students for the future. Interactive project-based learning that experiences productive failure provides the opportunity for students to problem-solve novel topics and potentially fail at finding the solution. Through explanation, elaboration, comparison of iterations, refinement, and implementations, students can be more prepared to solve future problems. Our study examined the benefits of productive failure on high school students from both formal and informal learning environments working in collaborative teams to design and create 3D plant models. This STEAM project integrates science, design, and technology through innovative learning experiences in plant and agricultural science using emergent technologies. This learning experience encourages students to work together in collaborative teams of self-identified science, technophile, and art students to create 3D models of plants used in research at the Donald Danforth Plant Science Center in St. Louis, MO. Students learn about scientific research, the importance of plants in our society, and practice science communication skills. To create the 3D models, students must learn-by-doing to become proficient in using previously unfamiliar 3D modeling software where their teachers are merely facilitators. Students become active participants in their own learning by overcoming challenges through research, troubleshooting, teamwork, and perseverance. We used a mixed-method assessment approach comparing pre- and post-reflection questions. Students experience many challenges with learning the 3D model programs. They reported that they overcame difficulties working with the 3D modeling programs primarily through help from others and consulting outside resources, such as YouTube videos, as well as through continued effort. Students indicated that they faced challenges when creating their models but recognized that this project was a learning experience. Productive failure through the process of struggling and learning from one’s mistakes can encourage positive learning outcomes and give students a better ability to overcome future challenges.more » « less
- 
            Goal: address the disconnect between science, design, and technology at the high school level. Objectives: 1. integrate art/design into STEM education (STEAM), 2. foster plant science knowledge, 3. apply augmented and virtual reality (AVR) technologies, and 4. inspire interest in and provide skills for future STEAM careers. Collaborative teams of self-identified science, technophile, and art students receive training in 3D modeling. With support from scientists, the students create models of research plants, practice science communication skills during public/scientific events, and make connections to real-life situations using AVR devices. We use a mixed-methods assessment approach. Results from the first year of this project indicate that students are more aware of the role of art/design in science and vice versa. Students acknowledge the benefits of productive failure when facing challenges creating 3D models and are more interested in STEAM career paths.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available