Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The case for making Electrochemical Science and Engineering part of the core chemical engineering curriculumFree, publicly-accessible full text available September 1, 2023
-
The palette of applications for bipolar membranes (BPMs) has expanded recently beyond electrodialysis as they are now being considered for fuel cell and electrolysis applications. Their deployment in emerging electrochemical technologies arises from the need to have a membrane separator that provides disparate pH environments and to prevent species crossover. Most materials research for BPMs has focused on water dissociation catalysts and less emphasis has been given to the design of the polycation–polyanion interface for improving BPM performance. Here, soft lithography fabricated a series of micropatterned BPMs with precise control over the interfacial area in the bipolar junction. Polarization experiments showed that a 2.28× increase in interfacial area led to a 250 mV reduction in the onset potential. Additionally, the same increase in interfacial area yielded marginal improvements in current density due to the junction region being under kinetics-diffusion control. A simple physics model based on the electric field of the junction region rationalized the reduction in the overpotential for water dissociation as a function of interfacial area. Finally, the soft lithography approach was also conducive for fabricating BPMs with different chemistries ranging from perfluorinated polymer backbones to alkaline stable poly(arylene) hydrocarbon polymers. These polymer chemistries are better suited formore »
-
Electrochemical separation processes are undergoing a renaissance as the range of applications continues to expand because they offer opportunities for increased energy efficiency and sustainability in comparison to conventional separation technologies. Existing platforms such as electrodialysis and electrodeionization (EDI) are seeing significant improvement and are currently being deployed for treating a diverse set of liquid streams ( e.g. , water and wastewater treatment, organic acid separation, etc. ). In addition, the relatively low inherent electricity requirement for electrochemical separations could potentially be satisfied through integration with sustainable sources of renewable energy. In order to achieve a truly sustainable electrochemical separations process, it is paramount to improve the energy efficiency of electrochemical separations by minimizing all sources of resistances within these units. This work reports of a new class of symmetric and asymmetric Janus bipolar resin wafers (RWs) that augment the spacer channel ionic conductivity in EDI while having the additional functionality of splitting water into protons and hydroxide ions. The latter attribute is important in niche applications that require pH modulation such as silica and organic acid removal from liquid streams. The Janus bipolar RWs were devised from single ion-conducting RWs that were interfaced together to create an intimate polycation–polyanionmore »