skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Argyropoulos, Christos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate the design and performance of a new multilayer graphene metasurface for achieving ultrabroadband coherent perfect absorption (CPA) in the THz regime. The proposed structure comprises three graphene patterned metasurfaces separated by thin dielectric spacer layers. The top and bottom metasurfaces have crossed shape unit cells of varying sizes, while the middle graphene metasurface is square-shaped. This distinctive geometrical asymmetry and the presence of multiple layers within the structure facilitate the achievement of wideband asymmetric reflection under incoherent illumination. This interesting property serves as a crucial step towards achieving near-total absorption under coherent illumination across a broad frequency range. Numerical simulations demonstrate that the absorption efficiency surpasses 90% across an ultrabroadband frequency range from 2.8 to 5.7 THz, i.e., a bandwidth of 2.9 THz. The CPA effect can be selectively tuned by manipulating the phase difference between the two incident coherent beams. Moreover, the absorption response can be dynamically adjusted by altering the Fermi level of graphene. The study also examines the influence of geometric parameters on the absorption characteristics. The results of this research work offer valuable insights into the design of broadband graphene metasurfaces for coherent absorption applications, and they contribute to the advancement of sophisticated optical devices operating in the THz frequency range.

     
    more » « less
  2. Development of methods to control the directional and spectral characteristics of thermal radiation from metallic surfaces is a critical factor enabling many important thermal management applications. In this paper, we study the thermal emission properties of functionalized aluminum surfaces produced through femtosecond laser surface processing (FLSP). These types of surfaces have recently been found to exhibit near-unity broadband omnidirectional emissivity. However, their ultrabroadband absorption response includes visible and near-infrared (IR) radiation, in addition to the mid-IR range, which limits their use as daytime passive radiative cooling devices. Here, we present ways to solve this problem by demonstrating a new, to our knowledge, design that uses a dielectric Bragg visible light reflector to accurately control the thermal emission spectra of the FLSP surface with the goal of achieving high-performance daytime radiative cooling operation. In addition, we propose other designs based on dielectric multilayer structures to further tailor and control the spectra and thermal emission angles of the FLSP surfaces leading to narrowband and broadband directional thermal radiation. The presented photonic engineering approach combined with FLSP structures will be beneficial to various emerging applications, such as radiative cooling, thermal sensing, and thermophotovoltaics.

     
    more » « less
  3. Abstract

    The inherently weak chiroptical responses of natural materials limit their usage for controlling and enhancing chiral light-matter interactions. Recently, several nanostructures with subwavelength scale dimensions were demonstrated, mainly due to the advent of nanofabrication technologies, as a potential alternative to efficiently enhance chirality. However, the intrinsic lossy nature of metals and the inherent narrowband response of dielectric planar thin films or metasurface structures pose severe limitations toward the practical realization of broadband and tailorable chiral systems. Here, we tackle these problems by designing all-dielectric silicon-based L-shaped optical metamaterials based on tilted nanopillars that exhibit broadband and enhanced chiroptical response in transmission operation. We use an emerging bottom-up fabrication approach, named glancing angle deposition, to assemble these dielectric metamaterials on a wafer scale. The reported strong chirality and optical anisotropic properties are controllable in terms of both amplitude and operating frequency by simply varying the shape and dimensions of the nanopillars. The presented nanostructures can be used in a plethora of emerging nanophotonic applications, such as chiral sensors, polarization filters, and spin-locked nanowaveguides.

     
    more » « less
  4. Free, publicly-accessible full text available November 15, 2024
  5. Graphene can support surface plasmons with higher confinement, lower propagation loss, and substantially more tunable response compared to usual metal-based plasmonic structures. Interestingly, plasmons in graphene can strongly couple with nanostructures and gratings placed in its vicinity to form new hybrid systems that can provide a platform to investigate more complicated plasmonic phenomena. In this Perspective, an analysis on the excitation of highly confined graphene plasmons and their strong coupling with metallic or dielectric gratings is performed. We emphasize the flexibility in the efficient control of light–matter interaction by these new hybrid systems, benefiting from the interplay between graphene plasmons and other external resonant modes. The hybrid graphene-plasmon grating systems offer unique tunable plasmonic resonances with enhanced field distributions. They exhibit a novel route to realize practical emerging applications, including nonreciprocal devices, plasmonic switches, perfect absorbers, nonlinear structures, photodetectors, and optical sensors.

     
    more » « less
  6. Nonreciprocal thermal emission is a cutting-edge technology that enables fundamental control over thermal radiation and has exciting applications in thermal energy harvesting. However, thus far one of the foremost challenges is making nonreciprocal emission operate over a broad wavelength range and for multiple angles. In this work, we solve this outstanding problem by proposing three different types of structures that always utilize only one Weyl semimetal (WSM) thin film combined with one or two additional dielectric or metallic layers and terminated by a metallic substrate. First, a tradeoff relationship between the magnitude and bandwidth of the thermal nonreciprocity contrast is established based on the thickness of the WSM film. Then, the bandwidth broadening effect is demonstrated via the insertion of a dielectric spacer layer that can also be fine-tuned by varying its thickness. Finally, further control on the resulting strong nonreciprocal thermal radiation is demonstrated by the addition of a thin metallic layer in the proposed few layer designs. The presented composite structures work for a broad frequency range and for multiple emission angles, resulting in highly advantageous properties for various nonreciprocal thermal radiation applications. Moreover, the proposed designs do not require any patterning and can be experimentally realized by simple deposition fabrication methods. They are expected to aid in the creation of broadband nonreciprocal thermal emitters that can find applications in new energy harvesting devices.

     
    more » « less
  7. Parity-time (PT) symmetric optical structures exhibit several unique and interesting characteristics, with the most popular being exceptional points. While the emerging concept of PT-symmetry has been extensively investigated in bulky photonic designs, its exotic functionalities in nanophotonic non-Hermitian plasmonic systems still remain relatively unexplored. Towards this goal, in this work we analyze the unusual properties of a plasmonic Huygens’ metasurface composed of an array of active metal-dielectric core-shell nanoparticles. By calculating the reflection and transmission coefficients of the metasurface under various levels of gain, we demonstrate the existence of reflectionless transmission when an exceptional point is formed. The proposed new active metasurface design has subwavelength thickness and can be used to realize ultracompact perfect transmission optical filters.

     
    more » « less
  8. Controlling the spectral and angular response of infrared (IR) radiation is a challenging task of paramount importance to various emerging photonic applications. Here, we overcome these problems by proposing and analyzing a new design of a tunable narrowband directional optical transmission filter. The presented thermally controlled multilayer filter leverages the temperature dependent phase change properties of vanadium dioxide (VO2) to enable efficient and reversible fast optical switching by using a pump-probe laser excitation setup. More specifically, transmission is blocked for high intensity probe lasers due to the VO2metallic properties induced at elevated temperatures while at low probe laser intensities high transmission through the filter occurs only for a narrowband IR range confined to near normal incident angles. The proposed multilayer composite dielectric filter is expected to have applications in optical communications, where it can act as dual functional infrared filter and optical switch.

     
    more » « less