- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0001000004000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Arias, Tomas A. (3)
-
Arias, Tomas (2)
-
Agrawal, Akanksha (1)
-
Archer, Lynden A. (1)
-
Arnold, Sophia (1)
-
Bundschu, Colin (1)
-
Cao, Michael C. (1)
-
Casebolt_DiDomenico, Rileigh (1)
-
Choudhury, Snehashis (1)
-
Cohen, Itai (1)
-
Gaitan, Gabriel (1)
-
Gerber, Eli (1)
-
Gunceler, Deniz (1)
-
Hanrath, Tobias (1)
-
Kim, Eun-Ah (1)
-
Kourkoutis, Lena F. (1)
-
Levine, Kelsey (1)
-
Liepe, Matthias (1)
-
Liu, Qingkun (1)
-
McEuen, Paul L. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Arnold, Sophia; Arias, Tomas; Gaitan, Gabriel; Liepe, Matthias; Shpani, Liana; Sitaraman, Nathan; Sun, Zeming (, JACoW Publishing)
-
Gerber, Eli; Yao, Yuan; Arias, Tomas A.; Kim, Eun-Ah (, Physical Review Letters)
-
Choudhury, Snehashis; Wei, Shuya; Ozhabes, Yalcin; Gunceler, Deniz; Zachman, Michael J.; Tu, Zhengyuan; Shin, Jung Hwan; Nath, Pooja; Agrawal, Akanksha; Kourkoutis, Lena F.; et al (, Nature Communications)
-
Liu, Qingkun; Wang, Wei; Reynolds, Michael F.; Cao, Michael C.; Miskin, Marc Z.; Arias, Tomas A.; Muller, David A.; McEuen, Paul L.; Cohen, Itai (, Science Robotics)Shape-memory actuators allow machines ranging from robots to medical implants to hold their form without continuous power, a feature especially advantageous for situations where these devices are untethered and power is limited. Although previous work has demonstrated shape-memory actuators using polymers, alloys, and ceramics, the need for micrometer-scale electro–shape-memory actuators remains largely unmet, especially ones that can be driven by standard electronics (~1 volt). Here, we report on a new class of fast, high-curvature, low-voltage, reconfigurable, micrometer-scale shape-memory actuators. They function by the electrochemical oxidation/reduction of a platinum surface, creating a strain in the oxidized layer that causes bending. They bend to the smallest radius of curvature of any electrically controlled microactuator (~500 nanometers), are fast (<100-millisecond operation), and operate inside the electrochemical window of water, avoiding bubble generation associated with oxygen evolution. We demonstrate that these shape-memory actuators can be used to create basic electrically reconfigurable microscale robot elements including actuating surfaces, origami-based three-dimensional shapes, morphing metamaterials, and mechanical memory elements. Our shape-memory actuators have the potential to enable the realization of adaptive microscale structures, bio-implantable devices, and microscopic robots.more » « less
An official website of the United States government

Full Text Available