- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Armstrong, Joseph J (2)
-
Tan, Jonathan C (2)
-
Eyer, Laurent (1)
-
Fajrin, Muhammad (1)
-
Farias, Juan P (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT In their early, formative stages star clusters can undergo rapid dynamical evolution leading to strong gravitational interactions and ejection of “runaway” stars at high velocities. While O/B runaway stars have been well studied, lower-mass runaways are so far very poorly characterized, even though they are expected to be much more common. We carried out spectroscopic observations with MAG2-MIKE to follow-up 27 high priority candidate runaways consistent with having been ejected from the Orion Nebula Cluster (ONC) $$\gt 2.5$$ Myr ago, based on Gaia astrometry. We derive spectroscopic youth indicators (Li and H $$\alpha$$) and radial velocities, enabling detection of bona fide runaway stars via signatures of youth and 3D traceback. We successfully confirmed 11 of the candidates as low-mass Young Stellar Objects (YSOs) on the basis of our spectroscopic criteria and derived radial velocities (RVs) with which we performed 3D traceback analysis. Three of these confirmed YSOs have kinematic ejection ages $$\gt 4\:$$ Myr, with the oldest being 4.7 Myr. Assuming that these stars indeed formed in the ONC and were then ejected, this yields an estimate for the overall formation time of the ONC to be at least $$\sim 5\:$$ Myr, i.e. about 10 free-fall times, and with a mean star formation efficiency per free-fall time of $$\bar{\epsilon }_{\rm ff}\lesssim 0.05$$. These results favour a scenario of slow, quasi-equilibrium star cluster formation, regulated by magnetic fields and/or protostellar outflow feedback.more » « lessFree, publicly-accessible full text available January 23, 2026
-
Armstrong, Joseph J; Tan, Jonathan C (, Astronomy & Astrophysics)Context.Most stars form in clusters or associations, but only a small number of these groups are expected to remain bound for longer than a few megayears. Once star formation has ended and the molecular gas around young stellar objects has been expelled via feedback processes, most initially bound young clusters lose the majority of their binding mass and begin to disperse into the Galactic field. Aims.This process can be investigated by analysing the structure and kinematic trends in nearby young clusters, particularly by analyzing the trend of expansion, which is a tell-tale sign that a cluster is no longer gravitationally bound and dispersing into the field. Methods.We combinedGaiaDR3 five-parameter astrometry with calibrated RVs for members of the nearby young clusterλOri (Collinder 69). Results.We characterised the plane-of-sky substructure of the cluster using theQ-parameter and the angular dispersion parameter. We find evidence that the cluster contains a significant substructure but that this is preferentially located away from the central cluster core, which is smooth and likely remains bound. We found strong evidence for expansion inλOri in the plane of sky by using a number of metrics, but we also found that the trends are asymmetric at the 5σsignificance level, with the maximum rate of expansion being directed nearly parallel to the Galactic plane. We subsequently inverted the maximum rate of expansion of 0.144−0.003+0.003kms−1pc−1to give an expansion timescale of 6.944−0.142+0.148Myr, which is slightly larger than the typical literature age estimates for the cluster. We also found asymmetry in the velocity dispersion as well as signatures of cluster rotation, and we calculated the kinematic ages for individual cluster members by tracing their motion back in time to their closest approach to the cluster centre.more » « lessFree, publicly-accessible full text available December 1, 2025