skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Armstrong, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We evaluate the performance of the Legacy Survey of Space and Time Science Pipelines Difference Image Analysis (DIA) on simulated images. By adding synthetic sources to galaxies on images, we trace the recovery of injected synthetic sources to evaluate the pipeline on images from the Dark Energy Science Collaboration Data Challenge 2. The pipeline performs well, with efficiency and flux accuracy consistent with the signal-to-noise ratio of the input images. We explore different spatial degrees of freedom for the Alard–Lupton polynomial-Gaussian image subtraction kernel and analyze for trade-offs in efficiency versus artifact rate. Increasing the kernel spatial degrees of freedom reduces the artifact rate without loss of efficiency. The flux measurements with different kernel spatial degrees of freedom are consistent. We also here provide a set of DIA flags that substantially filter out artifacts from the DIA source table. We explore the morphology and possible origins of the observed remaining subtraction artifacts and suggest that given the complexity of these artifact origins, a convolution kernel with a set of flexible bases with spatial variation may be needed to yield further improvements. 
    more » « less
  2. Common Mergansers Mergus merganser dive into lakes, rivers, and coastal waters to feed on fish and other aquatic prey. This species and others in the genus Mergus are traditionally classified as foot-propelled divers. When submerged, mergansers are expected to swim by kicking their feet, holding their wings close to their bodies. Here, we report, with video evidence, an event in which four mergansers used their wings underwater to chase down and capture a large fish. Documentation of wing use by this classically defined “foot-propelled diver” illustrates the gaps in our understanding of avian diving physiology, hydrodynamics, and behavior. 
    more » « less