Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. The global food trade system is resilient to minor disruptions but vulnerable to major ones. Major shocks can arise from global catastrophic risks, such as abrupt sunlight reduction scenarios (e.g. nuclear war) or global catastrophic infrastructure loss (e.g. due to severe geomagnetic storms or a global pandemic). We use a network model to examine how these two scenarios could impact global food trade, focusing on wheat, maize, soybeans, and rice, accounting for about 60 % of global calorie intake. Our findings indicate that an abrupt sunlight reduction scenario, with soot emissions equivalent to a major nuclear war between India and Pakistan (37 Tg), could severely disrupt trade, causing most countries to lose the vast majority of their food imports (50 %–100 % decrease), primarily due to the main exporting countries being heavily affected. Global catastrophic infrastructure loss with a comparable impact on yields as the abrupt sunlight reduction has a more homogeneous distribution of yield declines, resulting in most countries losing up to half of their food imports (25 %–50 % decrease). Thus, our analysis shows that both scenarios could significantly impact the food trade. However, the abrupt sunlight reduction scenario is likely more disruptive than global catastrophic infrastructure loss regarding the effects of yield reductions on food trade. This study underscores the vulnerabilities of the global food trade network to catastrophic risks and the need for enhanced preparedness.more » « less
-
Recent work has highlighted the possibility of ‘rate-induced tipping’, in which a system undergoes an abrupt transition when a perturbation exceeds a critical rate of change. Here, we argue that this is widely applicable to evolutionary systems: collapse, or extinction, may occur when external changes occur too fast for evolutionary adaptation to keep up. To bridge existing theoretical frameworks, we develop a minimal evolutionary–ecological model showing that rate-induced extinction and the established notion of ‘evolutionary rescue’ are fundamentally two sides of the same coin: the failure of one implies the other, and vice versa. We compare the minimal model’s behaviour with that of a more complex model in which the large-scale dynamics emerge from the interactions of many individual agents; in both cases, there is a well-defined threshold rate to induce extinction, and a consistent scaling law for that rate as a function of timescale. Due to the fundamental nature of the underlying mechanism, we suggest that a vast range of evolutionary systems should in principle be susceptible to rate-induced collapse. This would include ecosystems on all scales as well as human societies; further research is warranted.more » « less
-
Abstract Antarctic glacial meltwater is thought to play an important role in determining large-scale Southern Ocean climate trends, yet recent modeling efforts have proceeded without a good understanding of how its vertical distribution in the water column is set. To rectify this, here we conduct new large-eddy simulations of the ascent of a buoyant meltwater plume after its escape from beneath an Antarctic ice shelf. We find that the meltwater’s settling depth is primarily a function of the buoyancy forcing per unit width of the source and the ambient stratification, consistent with the classical theory of turbulent buoyant plumes and in contrast to previous work that suggested an important role for centrifugal instability. Our results further highlight the significant role played by localized variability in stratification; this helps explain observed interannual variability in the vertical meltwater distribution near Pine Island Glacier. Because of the vast heterogeneity in mass loss rates and ambient conditions at different Antarctic ice shelves, a dynamic parameterization of meltwater settling depth may be crucial for accurately simulating high-latitude climate in a warming world; we discuss how this may be developed following this work, and where the remaining challenges lie.more » « less
An official website of the United States government
