Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent developments in molecular networking have expanded our ability to characterize the metabolome of diverse samples that contain a significant proportion of ion features with no mass spectral match to known compounds. Manual and tool-assisted natural annotation propagation is readily used to classify molecular networks; however, currently no annotation propagation tools leverage consensus confidence strategies enabled by hierarchical chemical ontologies or enable the use of new in silico tools without significant modification. Herein we present ConCISE (Consensus Classifications of In Silico Elucidations) which is the first tool to fuse molecular networking, spectral library matching and in silico class predictions to establish accurate putative classifications for entire subnetworks. By limiting annotation propagation to only structural classes which are identical for the majority of ion features within a subnetwork, ConCISE maintains a true positive rate greater than 95% across all levels of the ChemOnt hierarchical ontology used by the ClassyFire annotation software (superclass, class, subclass). The ConCISE framework expanded the proportion of reliable and consistent ion feature annotation up to 76%, allowing for improved assessment of the chemo-diversity of dissolved organic matter pools from three complex marine metabolomics datasets comprising dominant reef primary producers, five species of the diatom genus Pseudo-nitzchia, and stromatolite sediment samples.more » « less
-
Abstract The dominant benthic primary producers in coral reef ecosystems are complex holobionts with diverse microbiomes and metabolomes. In this study, we characterize the tissue metabolomes and microbiomes of corals, macroalgae, and crustose coralline algae via an intensive, replicated synoptic survey of a single coral reef system (Waimea Bay, Oʻahu, Hawaii) and use these results to define associations between microbial taxa and metabolites specific to different hosts. Our results quantify and constrain the degree of host specificity of tissue metabolomes and microbiomes at both phylum and genus level. Both microbiome and metabolomes were distinct between calcifiers (corals and CCA) and erect macroalgae. Moreover, our multi-omics investigations highlight common lipid-based immune response pathways across host organisms. In addition, we observed strong covariation among several specific microbial taxa and metabolite classes, suggesting new metabolic roles of symbiosis to further explore.
-
microbeMASST: a taxonomically informed mass spectrometry search tool for microbial metabolomics data
Abstract microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms’ role in ecology and human health.
Free, publicly-accessible full text available February 5, 2025