skip to main content

Search for: All records

Creators/Authors contains: "Aronson, Myla F. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    A unique risk faced by nocturnally migrating birds is the disorienting influence of artificial light at night (ALAN). ALAN originates from anthropogenic activities that can generate other forms of environmental pollution, including the emission of fine particulate matter (PM2.5). PM2.5concentrations can display strong seasonal variation whose origin can be natural or anthropogenic. How this variation affects seasonal associations with ALAN and PM2.5for nocturnally migrating bird populations has not been explored.


    Western Hemisphere.

    Time Period


    Major Taxa Studied

    Nocturnally migrating passerine (NMP) bird species.


    We combined monthly estimates of PM2.5and ALAN with weekly estimates of relative abundance for 164 NMP species derived using observations from eBird. We identified groups of species with similar associations with monthly PM2.5. We summarized their shared environmental, geographical, and ecological attributes.


    PM2.5was lowest in North America, especially at higher latitudes during the boreal winter. PM2.5was highest in the Amazon Basin, especially during the dry season (August–October). ALAN was highest within eastern North America, especially during the boreal winter. For NMP species, PM2.5associations reached their lowest levels during the breeding season (<10 μg/m3) and highest levels during the nonbreeding season, especially for long‐distance migrants that winter in Central and South America (~20 μg/m3). Species that migrate through Central America in the spring encountered similarly high PM2.5concentrations. ALAN associations reached their highest levels for species that migrate (~12 nW/cm2/sr) or spend the nonbreeding season (~15 nW/cm2/sr) in eastern North America.

    Main Conclusions

    We did not find evidence that the disorienting influence of ALAN enhances PM2.5exposure during stopover in the spring and autumn for NMP species. Rather, our findings suggest biomass burning in the Neotropics is exposing NMP species to consistently elevated PM2.5concentrations for an extended period of their annual life cycles.

    more » « less
  2. Abstract Aim

    Two important environmental hazards for nocturnally migrating birds are artificial light at night (ALAN) and air pollution, with ambient fine particulate matter (PM2.5) considered to be especially harmful. Nocturnally migrating birds are attracted to ALAN during seasonal migration, which could increase exposure to PM2.5. Here, we examine PM2.5concentrations and PM2.5trends and the spatial correlation between ALAN and PM2.5within the geographical ranges of the world’s nocturnally migrating birds.



    Time period


    Major taxa studied

    Nocturnally migrating birds.


    We intersected a global database of annual mean PM2.5concentrations over a 21‐year period (1998–2018) with the geographical ranges (breeding, non‐breeding and regions of passage) of 225 nocturnally migrating bird species in three migration flyways (Americas,n = 143; Africa–Europe,n = 36; and East Asia–Australia,n = 46). For each species, we estimated PM2.5concentrations and trends and measured the correlation between ALAN and PM2.5, which we summarized by season and flyway.


    Correlations between ALAN and PM2.5were significantly positive across all seasons and flyways. The East Asia–Australia flyway had the strongest ALAN–PM2.5correlations within regions of passage, the highest PM2.5concentrations across all three seasons and the strongest positive PM2.5trends on the non‐breeding grounds and within regions of passage. The Americas flyway had the strongest negative air pollution trends on the non‐breeding grounds and within regions of passage. The breeding grounds had similarly negative air pollution trends within the three flyways.

    Main conclusions

    The combined threats of ALAN and air pollution are greatest and likely to be increasing within the East Asia–Australia flyway and lowest and likely to be decreasing within the Americas and Africa–Europe flyways. Reversing PM2.5trends in the East Asia–Australia flyway and maintaining negative PM2.5trends in the Americas and Africa–Europe flyways while reducing ALAN levels would likely be beneficial for the nocturnally migrating bird populations in each region.

    more » « less
  3. Abstract

    Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.

    more » « less