skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arreche, Carlos_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recently we constructed Mahler discrete residues for rational functions and showed they comprise a complete obstruction to the Mahler summability problem of deciding whether a given rational function $f(x)$ is of the form $$g(x^{p})-g(x)$$ for some rational function $g(x)$ and an integer $p> 1$. Here we develop a notion of $$\lambda $$-twisted Mahler discrete residues for $$\lambda \in \mathbb{Z}$$, and show that they similarly comprise a complete obstruction to the twisted Mahler summability problem of deciding whether a given rational function $f(x)$ is of the form $$p^{\lambda } g(x^{p})-g(x)$$ for some rational function $g(x)$ and an integer $p>1$. We provide some initial applications of twisted Mahler discrete residues to differential creative telescoping problems for Mahler functions and to the differential Galois theory of linear Mahler equations. 
    more » « less