skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arrington, Catherine M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While existing student modeling methods focus on predicting students’ knowledge states, they often overlook the underlying cognitive processes contributing to learning. In this work, we integrate cognitive processes, specifically phases of rule learning, into student modeling, drawing inspiration from cognitive science. Rule learning involves rule search, discovery, and following, providing a systematic framework for understanding how individuals acquire and apply knowledge. We conduct two studies to explore rule learning phases in a real-world learning context. Moreover, we present a two-step approach to first predict the phases of rule learning students experience during problem solving with an intelligent tutoring system and then estimate the time spent on each predicted phase. Furthermore, we identify the relationships between the time spent on specific phases of rule learning and student performance. Our findings underscore the importance of integrating cognitive processes into student modeling for more targeted interventions and personalized support. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Cognitive control and rule learning are two important mechanisms that explain how goals influence behavior and how knowledge is acquired. These mechanisms are studied heavily in cognitive science literature within highly controlled tasks to understand human cognition. Although they are closely linked to the student behaviors that are often studied within intelligent tutoring systems (ITS), their direct effects on learning have not been explored. Understanding these underlying cognitive mechanisms of beneficial and harmful student behaviors can provide deeper insight into detecting such behaviors and improve predictive models of student learning. In this paper, we present a thinkaloud study where we asked students to narrate their thought processes while solving probability problems in ASSISTments. Students are randomly assigned to one of two conditions that are designed to induce the two modes of cognitive control based on the Dual Mechanisms of Control framework. We also observe how the students go through the phases of rule learning as defined in a rule learning paradigm. We discuss the effects of these different mechanisms on learning, and how the information they provide can be used in student modeling. 
    more » « less
  3. Automatic detection of an individual’s mind-wandering state has implications for designing and evaluating engaging and effective learning interfaces. While it is difficult to differentiate whether an individual is mind-wandering or focusing on the task only based on externally observable behavior, brain-based sensing offers unique insights to internal states. To explore the feasibility, we conducted a study using functional near-infrared spectroscopy (fNIRS) and investigated machine learning classifiers to detect mind-wandering episodes based on fNIRS data, both on an individual level and a group level, specifically focusing on automated window selection to improve classification results. For individual-level classification, by using a moving window method combined with a linear discriminant classifier, we found the best windows for classification and achieved a mean F1-score of 74.8%. For group-level classification, we proposed an individual-based time window selection (ITWS) algorithm to incorporate individual differences in window selection. The algorithm first finds the best window for each individual by using embedded individual-level classifiers and then uses these windows from all participants to build the final classifier. The performance of the ITWS algorithm is evaluated when used with eXtreme gradient boosting, convolutional neural networks, and deep neural networks. Our results show that the proposed algorithm achieved significant improvement compared to the previous state of the art in terms of brain-based classification of mind-wandering, with an average F1-score of 73.2%. This builds a foundation for mind-wandering detection for both the evaluation of multimodal learning interfaces and for future attention-aware systems. 
    more » « less