skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arrington, Eleanor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The trace metal iron (Fe) is an essential micronutrient that controls phytoplankton productivity, which subsequently affects organic matter cycling with feedback on the cycling of macronutrients. Along the continental margin of the US West Coast, high benthic Fe release has been documented, in particular from deep anoxic basins in the Southern California Borderland. However, the influence of this Fe release on surface primary production remains poorly understood. In the present study from the Santa Barbara Basin, in situ benthic Fe fluxes were determined along a transect from shallow to deep sites in the basin. Fluxes ranged between 0.23 and 4.9 mmol m−2 d−1, representing some of the highest benthic Fe fluxes reported to date. To investigate the influence of benthic Fe release from the oxygen-deficient deep basin on surface phytoplankton production, we combined benthic flux measurements with numerical simulations using the Regional Ocean Modeling System coupled to the Biogeochemical Elemental Cycling (ROMS-BEC) model. For this purpose, we updated the model Fe flux parameterization to include the new benthic flux measurements from the Santa Barbara Basin. Our simulations suggest that benthic Fe fluxes enhance surface primary production, supporting a positive feedback on benthic Fe release by decreasing oxygen in bottom waters. However, a reduction in phytoplankton Fe limitation by enhanced benthic fluxes near the coast may be partially compensated for by increased nitrogen limitation further offshore, limiting the efficacy of this positive feedback. 
    more » « less
  2. null (Ed.)
  3. Abstract Background Cyanobacteria maintain extensive repertoires of regulatory genes that are vital for adaptation to environmental stress. Some cyanobacterial genomes have been noted to encode diversity-generating retroelements (DGRs), which promote protein hypervariation through localized retrohoming and codon rewriting in target genes. Past research has shown DGRs to mainly diversify proteins involved in cell-cell attachment or viral-host attachment within viral, bacterial, and archaeal lineages. However, these elements may be critical in driving variation for proteins involved in other core cellular processes. Results Members of 31 cyanobacterial genera encode at least one DGR, and together, their retroelements form a monophyletic clade of closely-related reverse transcriptases. This class of retroelements diversifies target proteins with unique domain architectures: modular ligand-binding domains often paired with a second domain that is linked to signal response or regulation. Comparative analysis indicates recent intragenomic duplication of DGR targets as paralogs, but also apparent intergenomic exchange of DGR components. The prevalence of DGRs and the paralogs of their targets is disproportionately high among colonial and filamentous strains of cyanobacteria. Conclusion We find that colonial and filamentous cyanobacteria have recruited DGRs to optimize a ligand-binding module for apparent function in signal response or regulation. These represent a unique class of hypervariable proteins, which might offer cyanobacteria a form of plasticity to adapt to environmental stress. This analysis supports the hypothesis that DGR-driven mutation modulates signaling and regulatory networks in cyanobacteria, suggestive of a new framework for the utility of localized genetic hypervariation. 
    more » « less
  4. Abstract The Thomas Fire ignited on December 4, 2017 and burned for over one month. As the Thomas Fire burned, Santa Ana winds carried a thick plume of smoke and ash over the Santa Barbara Channel. We sought to determine whether the deposition of Thomas Fire ash to the Santa Barbara Channel had a measurable effect on the concentration and stable carbon isotopic composition (δ13C) of dissolved black carbon (DBC) in coastal waters. DBC is the condensed aromatic fraction of thermally altered organic carbon quantified using the benzenepolycarboxylic acid (BPCA) method. DBC δ13C signatures were determined via BPCA‐specific stable carbon isotopic analysis. Surface water DBC concentrations beneath the smoke plume were up to 13% higher than other sampling stations. Via controlled leaching experiments, we found that Thomas Fire ash released a considerable amount of DBC in seawater (1.4 g‐DBC per kg of ash organic carbon), which was further enhanced by photodissolution. By combining in situ and experimental data, we constructed an isotopic mixing model to estimate inputs of ash‐derived DBC to marine surface waters. Although we were able to detect slight elevations in DBC concentrations beneath the smoke plume, the ash‐derived contributions were too small to meaningfully shift the δ13C signature, which resulted in an observed mismatch between modeled and measured DBC δ13C values. Few studies have investigated the immediate impacts of wildfire on coastal biogeochemistry. Therefore, our work provides an important foundation for understanding atmospheric contributions of fire‐derived DBC to coastal margins. 
    more » « less