skip to main content

Search for: All records

Creators/Authors contains: "Arsenault, Emily R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Lotic systems in mountain regions have historically provided secure habitat for native fish populations because of their relative isolation from human settlement and lack of upstream disturbances. However, rivers of mountain ecoregions are currently experiencing heightened levels of disturbance due to the introduction of nonnative species impacting endemic fishes in these areas. We compared the fish assemblages and diets of mountain steppe fishes of the stocked rivers in Wyoming with rivers in northern Mongolia where stocking is absent. Using gut content analysis, we quantified the selectivity and diets of fishes collected in these systems. Nonnative species had more generalist diets with lower levels of selectivity than most native species and native species had high levels of dietary specificity and selectivity. High abundances of nonnative species and high levels of dietary overlaps in our Wyoming sites is a cause of concern for native Cutthroat Trout and overall system stability. In contrast, fish assemblages characterizing Mongolia mountain steppe rivers were composed of only native species with diverse diets and higher selectivity values, suggesting low probability for interspecific competition.

    more » « less
  2. The Association for the Sciences of Limnology and Oceanography (ASLO) sponsors Eco-DAS, which is now in its 30th year. The program aims to unite aquatic scientists, develop diverse collaborations, and provide professional development training opportunities with guests from federal agencies, nonprofits, academia, tribal groups, and other workplaces (a previous iteration is summarized in Ghosh et al. 2022). Eco-DAS XV was one of the largest and most nationally diverse cohorts, including 37 early career aquatic scientists, 15 of whom were originally from 9 different countries outside the United States (Fig. 2). As the first cohort to meet in-person since the COVID-19 pandemic, Eco-DAS participants convened from 5 to 11 March 2023 to expand professional networks, create shared projects, and discuss areas of priority for the aquatic sciences. During the weeklong meeting, participants developed 46 proposal ideas, 16 of which will be further developed into projects and peer-reviewed manuscripts. 
    more » « less
    Free, publicly-accessible full text available July 3, 2024
  3. Summary

    Fungi link detrital resources and metazoan consumers through their role as decomposers. However, fungal contributions to metazoans may be misestimated in amino acid isotope studies because fungi are capable of both synthesizing amino acids (AAs)de novoand absorbing AAs from their environment. While fungi cultured in AA‐free media have been used to represent fungi in studies of natural environments, fungi likely gain energetic benefits by taking up substrate AAs directlyin situ. Consequently, fungi cultured on AA‐free media may not be representative of the true variability of natural fungal δ13CAAprofiles. Therefore, the objective of this experiment was to determine the effect of substrate AA availability on yeast δ13CAAprofiles. We found that yeasts cultured in media of relatively higher AA content had different δ13CAAprofiles than yeasts grown in AA‐free media, in part because yeasts utilized two essential AAs (Leu and Val) directly from media substrates when available in sufficient amounts. Furthermore, these differences among yeast δ13CAAprofiles remained after normalization of δ13CAAvalues. We recommend further characterization of the variation in fungal δ13CAAprofiles and the incorporation of this potential variability into interpretations of basal resource use by metazoans.

    more » « less
  4. Abstract

    The invasion of freshwater ecosystems by non‐native species can constitute a significant threat to native species and ecosystem health. Non‐native trouts have long been stocked in areas where native trouts occur and have negatively impacted native trouts through predation, competition, and hybridization. This study encompassed two seasons of sampling efforts across two ecoregions of the western United States: The Great Basin in summer 2016 and the Yellowstone River Basin in summer 2017. We found significant dietary overlaps among native and non‐native trouts within the Great Basin and Yellowstone River Basin ecoregions. Three orders of invertebrates (Ephemeroptera, Trichoptera, and Diptera) composed the majority of stomach contents and were responsible for driving the observed patterns. Great Basin trout had higher body conditions (k), and non‐native Great Basin trout had higher gut fullness values than Yellowstone River Basin trout, indicating a possible limitation of food in the Yellowstone River Basin. Native fishes were the least abundant and had the lowest body condition in each ecoregion. These findings may indicate a negative impact on native trouts by non‐native trouts. We recommend additional monitoring of native and non‐native trout diets, regular invertebrate surveys to identify the availability of diet items, and reconsidering stocking efforts that can result in overlap of non‐native fishes with native cutthroat trout.

    more » « less
  5. Abstract

    As we build a more diverse, equitable, and inclusive culture in the ecological research community, we must work to support new ecologists by empowering them with the knowledge, tools, validation, and sense of belonging in ecology to succeed. Undergraduate research experiences (UREs) are critical for a student's professional and interpersonal skill development and key for recruiting and retaining students from diverse groups to ecology. However, few resources exist that speak directly to an undergraduate researcher on the diversity, equity, and inclusion (DEI) dimensions of embarking on a first research experience. Here, we write primarily for undergraduate readers, though a broader audience of readers, especially URE mentors, will also find this useful. We explain many of the ways a URE benefits undergraduate researchers and describe how URE students from different positionalities can contribute to an inclusive research culture. We address three common sources of anxiety for URE students through a DEI lens: imposter syndrome, communicating with mentors, and safety in fieldwork. We discuss the benefits as well as the unique vulnerabilities and risks associated with fieldwork, including the potential for harassment and assault. Imposter syndrome and toxic field experiences are known to drive students, including students from underrepresented minority groups, out of STEM. Our goal is to encourage all students, including those from underrepresented groups, to apply for UREs, build awareness of their contributions to inclusion in ecology research, and provide strategies for overcoming known barriers.

    more » « less
  6. Abstract

    Flow of terrestrial carbon though aquatic ecosystems (allochthony) is an important but underestimated component of the global carbon cycle. A lack of clear consensus about the importance of allochthonous (terrestrial) organic carbon is sometimes attributed to uncertainties associated with conventional ‘bulk’ isotope data, the most widely used ecological tracer.

    Amino acid‐specific isotope analysis is an emerging research method promising to address existing limitations of bulk C and N isotope analyses. We tested the efficacy of amino acid δ13C data as a generalizable measure of allochthony by analysing an aggregated dataset (= 168) of primary and secondary data of carbon sources from disparate geographical locations across the globe.

    We found the δ13C fingerprints amino acids to be consistently distinct between allochthonous (terrestrial) and autochthonous (aquatic) carbon sources. We also found that our approach is most effective when we use only essential amino acid tracers (i.e. isoleucine, leucine, phenylalanine, threonine and valine). Predictive trends in δ13C fingerprints appear to be largely compatible across studies and/or laboratories.

    As a case study, we used this approach to quantify the contribution of terrestrial carbon to an endemic cavefish,Cryptotora thamicola, and found that its biomass was comprised largely of autochthonous carbon (~75%).

    more » « less