skip to main content


Search for: All records

Creators/Authors contains: "Arulraj, Joy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this demonstration, we will present EVA, an end-to-end AI-Relational database management system. We will demonstrate the capabilities and utility of EVA using three usage scenarios: (1) EVA serves as a backend for an exploratory video analytics interface developed using Streamlit and React, (2) EVA seamlessly integrates with the Python and Data Science ecosystems by allowing users to access EVA in a Python notebook alongside other popular libraries such as Pandas and Matplotlib, and (3) EVA facilitates bulk labeling with Label Studio, a widely-used labeling framework. By optimizing complex vision queries, we illustrate how EVA allows a wide range of application developers to harness the recent advances in computer vision.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. State-of-the-art video database management systems (VDBMSs) often use lightweight proxy models to accelerate object retrieval and aggregate queries. The key assumption underlying these systems is that the proxy model is an order of magnitude faster than the heavyweight oracle model. However, recent advances in computer vision have invalidated this assumption. Inference time of recently proposed oracle models is on par with or even lower than the proxy models used in state-of-the-art (SoTA) VDBMSs. This paper presents Seiden, a VDBMS that leverages this radical shift in the runtime gap between the oracle and proxy models. Instead of relying on a proxy model, Seiden directly applies the oracle model over a subset of frames to build a query-agnostic index, and samples additional frames to answer the query using an exploration-exploitation scheme during query processing. By leveraging the temporal continuity of the video and the output of the oracle model on the sampled frames, Seiden delivers faster query processing and better query accuracy than SoTA VDBMSs. Our empirical evaluation shows that Seiden is on average 6.6 x faster than SoTA VDBMSs across diverse queries and datasets.

     
    more » « less
  3. null (Ed.)
  4. The design of the buffer manager in database management systems (DBMSs) is influenced by the performance characteristics of volatile memory (i.e., DRAM) and non-volatile storage (e.g., SSD). The key design assumptions have been that the data must be migrated to DRAM for the DBMS to operate on it and that storage is orders of magnitude slower than DRAM. But the arrival of new non-volatile memory (NVM) technologies that are nearly as fast as DRAM invalidates these previous assumptions.Researchers have recently designed Hymem, a novel buffer manager for a three-tier storage hierarchy comprising of DRAM, NVM, and SSD. Hymem supports cache-line-grained loading and an NVM-aware data migration policy. While these optimizations improve its throughput, Hymem suffers from two limitations. First, it is a single-threaded buffer manager. Second, it is evaluated on an NVM emulation platform. These limitations constrain the utility of the insights obtained using Hymem. In this paper, we present Spitfire, a multi-threaded, three-tier buffer manager that is evaluated on Optane Persistent Memory Modules, an NVM technology that is now being shipped by Intel. We introduce a general framework for reasoning about data migration in a multi-tier storage hierarchy. We illustrate the limitations of the optimizations used in Hymem on Optane and then discuss how Spitfire circumvents them. We demonstrate that the data migration policy has to be tailored based on the characteristics of the devices and the workload. Given this, we present a machine learning technique for automatically adapting the policy for an arbitrary workload and storage hierarchy. Our experiments show that Spitfire works well across different workloads and storage hierarchies. 
    more » « less
  5. https://pirl.nvsl.io/2020/02/11. 
    more » « less
  6. The advent of non-volatile memory (NVM) invalidates fundamental design decisions that are deeply embedded in today‚Äôs software systems. In a recent blog post, Steve Swanson presented the three milestones that mark different stages of NVM adoption. The proposed steps would certainly enable general applications to leverage NVM with limited development effort. However, recent research in the database systems community points out that the opportunity for NVM-aware applications does not stop with bespoke NVM-aware data structures. We believe that the next level of evolution, or level 4.0 in the original milestones, is tailoring fundamental protocols and algorithms for NVM. This blog post details how database systems are being redesigned for NVM. We first present a new logging and recovery protocol for NVM and then describe a data processing algorithm for sorting NVM-resident data. We hope that this blog post will give the computer architecture community a better idea of the different ways in which NVM may be used by data-intensive applications. 
    more » « less