Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper reviews trends in GeoAI research and discusses cutting-edge advances in GeoAI and its roles in accelerating environmental and social sciences. It addresses ongoing attempts to improve the predictability of GeoAI models and recent research aimed at increasing model explainability and reproducibility to ensure trustworthy geospatial findings. The paper also provides reflections on the importance of defining the science of GeoAI in terms of its fundamental principles, theories, and methods to ensure scientific rigor, social responsibility, and lasting impacts.more » « lessFree, publicly-accessible full text available September 20, 2025
-
This paper assesses trending AI foundation models, especially emerging computer vision foundation models and their performance in natural landscape feature segmentation. While the term foundation model has quickly garnered interest from the geospatial domain, its definition remains vague. Hence, this paper will first introduce AI foundation models and their defining characteristics. Built upon the tremendous success achieved by Large Language Models (LLMs) as the foundation models for language tasks, this paper discusses the challenges of building foundation models for geospatial artificial intelligence (GeoAI) vision tasks. To evaluate the performance of large AI vision models, especially Meta’s Segment Anything Model (SAM), we implemented different instance segmentation pipelines that minimize the changes to SAM to leverage its power as a foundation model. A series of prompt strategies were developed to test SAM’s performance regarding its theoretical upper bound of predictive accuracy, zero-shot performance, and domain adaptability through fine-tuning. The analysis used two permafrost feature datasets, ice-wedge polygons and retrogressive thaw slumps because (1) these landform features are more challenging to segment than man-made features due to their complicated formation mechanisms, diverse forms, and vague boundaries; (2) their presence and changes are important indicators for Arctic warming and climate change. The results show that although promising, SAM still has room for improvement to support AI-augmented terrain mapping. The spatial and domain generalizability of this finding is further validated using a more general dataset EuroCrops for agricultural field mapping. Finally, we discuss future research directions that strengthen SAM’s applicability in challenging geospatial domains.more » « less
-
Some information contained in historical topographic maps has yet to be captured digitally, which limits the ability to automatically query such data. For example, U.S. Geological Survey’s historical topographic map collection (HTMC) displays millions of spot elevations at locations that were carefully chosen to best represent the terrain at the time. Although research has attempted to reproduce these data points, it has proven inadequate to automatically detect and recognize spot elevations in the HTMC. We propose a deep learning workflow pretrained using large benchmark text datasets. To these datasets we add manually crafted training image/label pairs, and test how many are required to improve prediction accuracy. We find that the initial model, pretrained solely with benchmark data, fails to predict any HTMC spot elevations correctly, whereas the addition of just 50 custom image/label pairs increases the predictive ability by ∼50%, and the inclusion of 350 data pairs increased performance by ∼80%. Data augmentation in the form of rotation, scaling, and translation (offset) expanded the size and diversity of the training dataset and vastly improved recognition accuracy up to ∼95%. Visualization methods, such as heat map generation and salient feature detection, can be used to better understand why some predictions fail.more » « less