Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Motivation: Publicly available k-space data used for training are inherently noisy with no available ground truth. Goal(s): To denoise k-space data in an unsupervised manner for downstream applications. Approach: We use Generalized Stein’s Unbiased Risk Estimate (GSURE) applied to multi-coil MRI to denoise images without access to ground truth. Subsequently, we train a generative model to show improved accelerated MRI reconstruction. Results: We demonstrate: (1) GSURE can successfully remove noise from k-space; (2) generative priors learned on GSURE-denoised samples produce realistic synthetic samples; and (3) reconstruction performance on subsampled MRI improves using priors trained on denoised images in comparison to training on noisy samples. Impact: This abstract shows that we can denoise multi-coil data without ground truth and train deep generative models directly on noisy k-space in an unsupervised manner, for improved accelerated reconstruction.more » « less
-
Image reconstruction is the process of recovering an image from raw, under-sampled signal measurements, and is a critical step in diagnostic medical imaging, such as magnetic resonance imaging (MRI). Recently, data-driven methods have led to improved image quality in MRI reconstruction using a limited number of measurements, but these methods typically rely on the existence of a large, centralized database of fully sampled scans for training. In this work, we investigate federated learning for MRI reconstruction using end-to-end unrolled deep learning models as a means of training global models across multiple clients (data sites), while keeping individual scans local. We empirically identify a low-data regime across a large number of heterogeneous scans, where a small number of training samples per client are available and non-collaborative models lead to performance drops. In this regime, we investigate the performance of adaptive federated optimization algorithms as a function of client data distribution and communication budget. Experimental results show that adaptive optimization algorithms are well suited for the federated learning of unrolled models, even in a limited-data regime (50 slices per data site), and that client-sided personalization can improve reconstruction quality for clients that did not participate in training.more » « less