Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 18, 2026
-
Abstract Accurate reconstructions of export production in the Subantarctic Zone of the Southern Ocean are crucial for understanding the carbon cycle during Earth's past. However, due to the strong bottom water circulation of the Antarctic Circumpolar Current, sediment redistribution complicates age‐model‐derived bulk mass accumulation rates (BMAR). Here, we assess export production and its drivers over the past ∼1.4 Myr near the Drake Passage entrance using BMAR of biogenic barium, organic carbon, biogenic opal, calcium carbonate, and iron from sediment core PS97/093‐2, all of which are corrected for lateral sediment redistribution (corr‐BMAR). To quantify this correction, we explore the relationship between sortable silt as a bottom current strength proxy and230Th‐derived focusing factors as indicators of lateral redistribution of sediments, respectively. Our findings highlight peak Fe input prior and during glacials of the Mid‐Pleistocene Transition (MPT), likely driven by enhanced Patagonian weathering. The carbonate record indicates increased deep‐ocean corrosivity after around 1 Ma ago and displays a shift in the accumulation pattern post‐MPT, with only isolated peaks in some peak interglacials. The high carbonate values during MIS 11 likely relate toGephyrocapsacoccolithophore propagation, preceded and followed by prolonged carbonate dissolution periods, possibly linked to the Mid‐Brunhes Event. After the MPT, productivity proxies respond to glacial and interglacial intensity, with maxima found during MIS 16, MIS 11, MIS 5, and the Holocene, while minima occur during MIS 15–12. Our findings offer insights into long‐term productivity dynamics and their relationship to important climatic events over the past 1.4 Myr.more » « lessFree, publicly-accessible full text available February 1, 2026
-
The Antarctic Circumpolar Current (ACC) represents the world’s largest ocean-current system and affects global ocean circulation, climate and Antarctic ice-sheet stability1–3. Today, ACC dynamics are controlled by atmospheric forcing, oceanic density gradients and eddy activity4. Whereas palaeoceanographic reconstructions exhibit regional heterogeneity in ACC position and strength over Pleistocene glacial–interglacial cycles5–8, the long-term evolution of the ACC is poorly known. Here we document changes in ACC strength from sediment cores in the Pacific Southern Ocean. We find no linear long-term trend in ACC flow since 5.3 million years ago (Ma), in contrast to global cooling9and increasing global ice volume10. Instead, we observe a reversal on a million-year timescale, from increasing ACC strength during Pliocene global cooling to a subsequent decrease with further Early Pleistocene cooling. This shift in the ACC regime coincided with a Southern Ocean reconfiguration that altered the sensitivity of the ACC to atmospheric and oceanic forcings11–13. We find ACC strength changes to be closely linked to 400,000-year eccentricity cycles, probably originating from modulation of precessional changes in the South Pacific jet stream linked to tropical Pacific temperature variability14. A persistent link between weaker ACC flow, equatorward-shifted opal deposition and reduced atmospheric CO2during glacial periods first emerged during the Mid-Pleistocene Transition (MPT). The strongest ACC flow occurred during warmer-than-present intervals of the Plio-Pleistocene, providing evidence of potentially increasing ACC flow with future climate warming.more » « less
An official website of the United States government
