skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Asael, Dan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Isotope ratio analyses of trace elements are applied to tooth enamel, ostrich eggshell, and other archaeological hard tissues to infer mobility and other aspects of hominin and animal paleoecology. It has been assumed that these highly mineralized tissues are resistant to diagenetic alteration, but this is seldom tested and some studies document diagenetic alteration over brief time spans. Here, we build on existing research on Maximum Threshold Concentrations (MTCs) to develop screening tools for diagenesis that can inform heavy isotopic analyses. The premise of the MTC approach is that archaeological tissues are likely contaminated and unsuitable for isotope ratio analysis when they exceed characteristic modern concentration ranges of trace elements. Furthermore, we propose a new metric called the Maximum Threshold Ratio (MTR) of 85Rb/88Sr or whole element Rb/Sr, which can be measured simultaneously with 87Sr/86Sr during laser ablation (LA) MC-ICP-MS or applied during post hoc screening of specimens. We analyzed 56 enamel samples from modern Kenyan mammals and 34 modern ostrich eggshells from South Africa, Namibia, and the United States by solution ICP-MS, as well as a subset of shells using LA-MC-ICP-MS. Our results indicate that thresholds are consistent across taxa at a single location, but likely vary across locations. Therefore, MTCs and MTRs need to be tissue and locality specific, but not necessarily taxon-specific. Other important differences are observed between the inner and outer surfaces of the eggshells and between LA and solution ICP-MS. This exploratory study provides guidelines for building reference thresholds to screen enamel and eggshell for diagenesis potentially impacting biogenic isotope ratios. 
    more » « less
  2. null (Ed.)
    Low oxygen conditions in the modern Baltic Sea are exacerbated by human activities; however, anoxic conditions also prevailed naturally over the Holocene. Few studies have characterized the specific paleoredox conditions (manganous, ferruginous, euxinic) and their frequency in southern Baltic sub-basins during these ancient events. Here, we apply a suite of isotope systems (Fe, Mo, S) and associated elemental proxies (e.g., Fe speciation, Mn) to specifically define water column redox regimes through the Baltic Holocene in a sill-proximal to sill-distal transect (Lille Belt, Bornholm Basin, Landsort Deep) using samples collected during the Integrated Ocean Drilling Program Expedition 347. At the sill-proximal Lille Belt, there is evidence for anoxic manganous/ferruginous conditions for most of the cored interval following the transition from the Ancylus Lake to Littorina Sea but with no clear excursion to more reducing or euxinic conditions associated with the Holocene Thermal Maximum (HTM) or Medieval Climate Anomaly (MCA) events. At the sill-distal southern sub-basin, Bornholm Basin, a combination of Fe speciation, pore water Fe, and solid phase Mo concentration and isotope data point to manganous/ferruginous conditions during the Ancylus Lake-to-Littorina Sea transition and HTM but with only brief excursions to intermittently or weakly euxinic conditions during this interval. At the western Baltic Proper sub-basin, Landsort Deep, new Fe and S isotope data bolster previous Mo isotope records and Fe speciation evidence for two distinct anoxic periods but also suggest that sulfide accumulation beyond transient levels was largely restricted to the sediment-water interface. Ultimately, the combined data from all three locations indicate that Fe enrichments typically indicative of euxinia may be best explained by Fe deposition as oxides following events likely analogous to the periodic incursions of oxygenated North Sea waters observed today, with subsequent pyrite formation in sulfidic pore waters. Additionally, the Mo isotope data from multiple Baltic Sea southern basins argue against restricted and widespread euxinic conditions, as has been demonstrated in the Baltic Proper and Bothnian Sea during the HTM or MCA. Instead, similar to today, each past Baltic anoxic event is characterized by redox conditions that become progressively more reducing with increasing distance from the sill. 
    more » « less