skip to main content


Search for: All records

Creators/Authors contains: "Asbury, Mollie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The health of coral reef benthic and fish communities is implicitly connected, yet typically studied and managed separately. By developing a coupled reef population model that connects coral populations and reef fish biomass through the habitat complexity that corals build and fish live among, we aim to address this gap by holistically quantifying ecological feedbacks and responses to ecological stressors. We explored the impacts of fishing effort in conjunction with three types of ecological disturbances as they propagated through a coral reef ecosystem: (1) a disturbance that disproportionately affected small, bio‐energetically vulnerable colonies, (2) a disturbance that predominantly affected large, mechanically vulnerable colonies, and (3) a disturbance that affected colonies of all sizes randomly. We found that joint coral and fish population recovery was fastest and most complete under events affecting small colonies, followed by recovery from disturbances affecting random sizes, and lastly large‐colony disturbances. These results suggest that the retention versus loss of large coral colonies with high reproductive potential critically influenced population recovery. Low fishing levels maintained fish and coral populations and allowed for recovery after disturbances, whereas high fishing levels prevented recovery due to greater fish‐dependent coral mortality. Finally, we tested various formulations of the relationship between coral size and habitat complexity (i.e., exponential, linear, logarithmic) that constrain fish carrying capacity. All formulations led to similar population projections in most disturbance scenarios, but there were exceptions where the timing and trajectory of recovery differed, such as faster and greater recovery potential when complexity is logarithmic with respect to coral size. These findings suggest that fishing and habitat complexity mediate the recovery of coral reef populations, emphasizing the importance of describing linkages between coral size distribution and reef habitat structure. Furthermore, our results highlight the utility of the coupled‐model framework for understanding and managing the impact of disturbances at ecosystem scales.

     
    more » « less
  2. Abstract Aim

    Habitat complexity plays an important role in the structure and function of ecosystems worldwide. On coral reefs, habitat complexity influences ecosystem services such as harvestable fish biomass and attenuation of wave energy. Here, we test how three descriptors of surface complexity—rugosity, fractal dimension, and height range—trend with the geological age of reefs (0.2–5.1 million years old), depth (1–25 m), wave exposure (1–306 kW/m), coral cover (0–80%), and three habitat types (aggregated reef, rock and boulder, and pavement).

    Location

    We surveyed across 234 sites and 4 degrees of latitude in the eight main Hawaiian Islands.

    Time Period

    April 2019 – July 2019.

    Major Taxa Studied

    Reef building corals.

    Methods

    We estimate three surface descriptors (rugosity, fractal dimension and height range) using structure‐from‐motion photogrammetry. We evaluate hypothesized relationships between these descriptors and geological reef age, depth, wave exposure, coral cover and reef habitat type using generalized linear models that account for survey design.

    Results

    The rugosity of reef habitats decreased with geological reef age; fractal dimension (and coral cover) decreased with wave exposure; and height range decreased with depth. Variations in these patterns were explained by the different habitat types and the way they are formed over time. Nonetheless, the three surface descriptors were geometrically constrained across all habitat types, and so habitats occupied distinctly different regions of habitat complexity space.

    Main Conclusions

    This study showed how broad environmental characteristics influence the structural complexity of habitats, and therefore geodiversity, which is an important first step toward understanding the communities supported by these habitats and their ecosystem services.

     
    more » « less
  3. Abstract

    In their recent synopsis, Loke and Chisholm (Ecology Letters, 25, 2269–2288, 2022) present an overview of habitat complexity metrics for ecologists. They provide a review and some sound advice. However, we found several of their analyses and opinions misleading. This technical note provides a different perspective on the complexity metrics assessed.

     
    more » « less