Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract Accurate prediction of suicide risk among children and adolescents within an actionable time frame is an important but challenging task. Very few studies have comprehensively considered the clinical risk factors available to produce quantifiable risk scores for estimation of short- and long-term suicide risk for pediatric population. In this paper, we built machine learning models for predicting suicidal behavior among children and adolescents based on their longitudinal clinical records, and determining short- and long-term risk factors. This retrospective study used deidentified structured electronic health records (EHR) from the Connecticut Children’s Medical Center covering the period from 1 October 2011 to 30 September 2016. Clinical records of 41,721 young patients (10–18 years old) were included for analysis. Candidate predictors included demographics, diagnosis, laboratory tests, and medications. Different prediction windows ranging from 0 to 365 days were adopted. For each prediction window, candidate predictors were first screened by univariate statistical tests, and then a predictive model was built via a sequential forward feature selection procedure. We grouped the selected predictors and estimated their contributions to risk prediction at different prediction window lengths. The developed predictive models predicted suicidal behavior across all prediction windows with AUCs varying from 0.81 to 0.86. For all prediction windows, the models detected 53–62% of suicide-positive subjects with 90% specificity. The models performed better with shorter prediction windows and predictor importance varied across prediction windows, illustrating short- and long-term risks. Our findings demonstrated that routinely collected EHRs can be used to create accurate predictive models for suicide risk among children and adolescents.more » « less
-
Abstract Model selection in the presence of interaction terms is challenging as the final model must maintain a hierarchy between main effects and interaction terms. This work presents two stagewise estimation approaches to appropriately select models with interaction terms that can utilize generalized estimating equations to model clustered data. The first proposed technique is a hierarchical lasso stagewise estimating equations approach, which is shown to directly correspond to the hierarchical lasso penalized regression. The second is a stagewise active set approach, which enforces the variable hierarchy by conforming the selection to a properly growing active set in each stagewise estimation step. The effectiveness in interaction selection and the superior computational efficiency of the proposed techniques are assessed in simulation studies. The new methods are applied to a study of hospitalization rates attributed to suicide attempts among 15 to 19 year old at the school district level in Connecticut.more » « less
An official website of the United States government
