- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Ashebir, Simachew (1)
-
Kim, Seongtae (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The growing demand for efficient energy management has become essential for achieving sustainable development across social, economic, and environmental sectors. Accurate energy demand forecasting plays a pivotal role in energy management. However, energy demand data present unique challenges due to their complex characteristics, such as multi-seasonality, hidden structures, long-range dependency, irregularities, volatilities, and nonlinear patterns, making energy demand forecasting challenging. We propose a hybrid dimension reduction deep learning algorithm, Temporal Variational Residual Network (TVRN), to address these challenges and enhance forecasting performance. This model integrates variational autoencoders (VAEs), Residual Neural Networks (ResNets), and Bidirectional Long Short-Term Memory (BiLSTM) networks. TVRN employs VAEs for dimensionality reduction and noise filtering, ResNets to capture local, mid-level, and global features while tackling gradient vanishing issues in deeper networks, and BiLSTM to leverage past and future contexts for dynamic and accurate predictions. The performance of the proposed model is evaluated using energy consumption data, showing a significant improvement over traditional deep learning and hybrid models. For hourly forecasting, TVRN reduces root mean square error and mean absolute error, ranging from 19% to 86% compared to other models. Similarly, for daily energy consumption forecasting, this method outperforms existing models with an improvement in root mean square error and mean absolute error ranging from 30% to 95%. The proposed model significantly enhances the accuracy of energy demand forecasting by effectively addressing the complexities of multi-seasonality, hidden structures, and nonlinearity.more » « lessFree, publicly-accessible full text available September 1, 2026
An official website of the United States government
