skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ashley, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. TheDrosophilaneuromuscular junction (NMJ) is an excellent model for studying vertebrate glutamatergic synapses. Researchers have uncovered fundamental mechanisms at the fly NMJ that are conserved in higher-order organisms. To gain molecular and structural insight into these and other structures, immunolabeling is invaluable. In this protocol, we describe how to use immunolabeling to visualize embryonic/larval presynaptic and postsynaptic structures at the NMJ. We also include details about amplification of weak immunohistochemistry signals and how to use these signals to quantify synaptic growth via bouton counting. Boutons are bead-like structures at motor axon terminals that house synapses, and the number of boutons reflects the size of the NMJ. We also describe how to identify the different bouton types. 
    more » « less
    Free, publicly-accessible full text available June 12, 2025
  2. For decades, theDrosophilalarval neuromuscular junction (NMJ) has been a go-to model for synaptic development. This simple, accessible system is composed of a repeating pattern of 33 distinct neurons that stereotypically innervate 30 muscles. Fundamental mechanisms that underlie diverse aspects of axon pathfinding, synaptic form, and function have been uncovered at the NMJ, and new pathways continue to be uncovered. These discoveries are fueled by the ease of dissections and an extensive array of techniques. Chief among these techniques are various microscopy approaches, including super-resolution and electron microscopy. Functionally, theDrosophilaNMJ is glutamatergic, similar to the vertebrate central synapses, making it a great model to study normal development and neurological diseases. Here we provide a brief overview of the larval neuromuscular system, highlighting the connectivity patterns, development, and some of the mechanisms underlying these processes. 
    more » « less
    Free, publicly-accessible full text available June 12, 2025
  3. In the nearly 50 years since the neuromuscular junction (NMJ) was first established as a model synapse, its molecular composition has been extensively characterized. Early work relied on fluorescent signals to determine whether proteins localized to the pre- and postsynaptic regions. As more synaptic molecules were identified, determining the localization of these proteins relative to each other became important. Conventional microscopy lacks the resolving power to assess whether two proteins are within an appropriate distance to bind directly or be part of a larger complex. Super-resolution and immunoelectron microscopies can improve spatial resolution, but these techniques can be difficult to execute and troubleshoot, and access to these instruments is limiting. However, another approach, proximity labeling, overcomes many of these limitations by using a DNA secondary label that can only be amplified if the two proteins of interest are within 40 nm of each other, which is ∼5× greater than the resolving power of conventional microscopy. In this protocol, we describe the use of the proximity ligation assay, which combines immunohistochemistry with DNA amplification, to reveal protein colocalization in theDrosophilaNMJ. 
    more » « less
    Free, publicly-accessible full text available June 12, 2025
  4. Tissue development requires local and long-distance communication between cells. Cell ablation experiments have provided critical insights into the functions of specific cell types and the tissue surrounding the dead cells. In theDrosophilaneuromuscular system, ablation of motor neurons and muscles has revealed the roles of the ablated cells in axon pathfinding and circuit wiring. For example, when muscles are denervated due to laser ablation of their motor neuron inputs, they receive ectopic innervation from neighboring motor neurons. Here, we describe two methods of specific cell ablation. The first is a genetic ablation approach that usesGAL4(ideally expressed in a small subset of cells) to drive expression of cell death genesreaperandhead involution defective. The second method relies on reactive oxygen species produced by light activation of theArabidopsis-derived Singlet Oxygen Generator, miniSOG2, expressed in a subset of cells. For the latter, the precision stems from both theGAL4and the restricting of the blue-light stimulation area. 
    more » « less
    Free, publicly-accessible full text available June 12, 2025
  5. Determining the precise localization of interacting proteins provides fundamental insight into their putative function. Classically, immunolabeling of endogenous proteins or generating tagged versions of proteins has been used to localize interacting proteins. However, in many cases, the interacting partner of a protein of interest is unknown. For cell surface proteins, it is possible to determine the localization of interacting proteins if one of the binding partners is known. This approach is based on generating purified, recombinant, tagged extracellular domains (ECDs) of a protein of interest, and incubating tissue to allow the recombinant protein to bind to its interacting partner(s). In this protocol, we detail the cloning of secreted, tagged ECDs from cell surface proteins, transfection of cloned plasmids into S2 cells, collection of secreted domains, concentration of the cell culture medium to enrich for the ECDs, and labeling of tissue with these ECDs. 
    more » « less
    Free, publicly-accessible full text available June 12, 2025
  6. One of the challenges of studying synaptic structure and function is accessibility. Some of the earliest readily identifiable and accessible synapses were from the frog and various arthropods. To address questions regarding mechanisms that underlie synaptic development and function, genetically tractable systems were required, and researchers turned to theDrosophila melanogasterembryonic/larval neuromuscular preparation.Drosophilaembryos are transparent and can be labeled with antibodies or probes and imaged in whole-mount preparation for structural analysis. Embryos can also be dissected to visualize the entire body wall musculature as well as finer details including live protein trafficking and protein–protein interactions. Whereas younger dissected embryos can be mounted directly onto charged slides, more mature embryos and larvae develop a cuticle that impedes this adherence, so different techniques must be applied. In this protocol, we detail how to manufacture dissection tools and collect embryos, and discuss the individual steps of dissecting late-stage embryos, early first-instar larvae, and late-stage third-instar larvae. 
    more » « less
    Free, publicly-accessible full text available June 12, 2025
  7. Abstract Neuronal cell death and subsequent brain dysfunction are hallmarks of aging and neurodegeneration, but how the nearby healthy neurons (bystanders) respond to the death of their neighbors is not fully understood. In theDrosophilalarval neuromuscular system, bystander motor neurons can structurally and functionally compensate for the loss of their neighbors by increasing their terminal bouton number and activity. We term this compensation as cross-neuron plasticity, and in this study, we demonstrate that theDrosophilaengulfment receptor, Draper, and the associated kinase, Shark, are required for cross-neuron plasticity. Overexpression of the Draper-I isoform boosts cross-neuron plasticity, implying that the strength of plasticity correlates with Draper signaling. In addition, we find that functional cross-neuron plasticity can be induced at different developmental stages. Our work uncovers a role for Draper signaling in cross-neuron plasticity and provides insights into how healthy bystander neurons respond to the loss of their neighboring neurons. 
    more » « less
  8. ABSTRACT In complex nervous systems, neurons must identify their correct partners to form synaptic connections. The prevailing model to ensure correct recognition posits that cell-surface proteins (CSPs) in individual neurons act as identification tags. Thus, knowing what cells express which CSPs would provide insights into neural development, synaptic connectivity, and nervous system evolution. Here, we investigated expression of Dpr and DIP genes, two CSP subfamilies belonging to the immunoglobulin superfamily, in Drosophila larval motor neurons (MNs), muscles, glia and sensory neurons (SNs) using a collection of GAL4 driver lines. We found that Dpr genes are more broadly expressed than DIP genes in MNs and SNs, and each examined neuron expresses a unique combination of Dpr and DIP genes. Interestingly, many Dpr and DIP genes are not robustly expressed, but are found instead in gradient and temporal expression patterns. In addition, the unique expression patterns of Dpr and DIP genes revealed three uncharacterized MNs. This study sets the stage for exploring the functions of Dpr and DIP genes in Drosophila MNs and SNs and provides genetic access to subsets of neurons. 
    more » « less