skip to main content

Search for: All records

Creators/Authors contains: "Ashton, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 28, 2022
  2. Gravitational waves provide a unique tool for observational astronomy. While the first LIGO–Virgo catalogue of gravitational wave transients (GWTC-1) contains 11 signals from black hole and neutron star binaries, the number of observations is increasing rapidly as detector sensitivity improves. To extract information from the observed signals, it is imperative to have fast, flexible, and scalable inference techniques. In a previous paper, we introduced BILBY: a modular and user-friendly Bayesian inference library adapted to address the needs of gravitational-wave inference. In this work, we demonstrate that BILBY produces reliable results for simulated gravitational-wave signals from compact binary mergers, and verifymore »that it accurately reproduces results reported for the 11 GWTC-1 signals. Additionally, we provide configuration and output files for all analyses to allow for easy reproduction, modification, and future use. This work establishes that BILBY is primed and ready to analyse the rapidly growing population of compact binary coalescence gravitational-wave signals.« less
  3. ABSTRACT During ϕX174 morphogenesis, 240 copies of the external scaffolding protein D organize 12 pentameric assembly intermediates into procapsids, a reaction reconstituted in vitro . In previous studies, ϕX174 strains resistant to exogenously expressed dominant lethal D genes were experimentally evolved. Resistance was achieved by the stepwise acquisition of coat protein mutations. Once resistance was established, a stimulatory D protein mutation that greatly increased strain fitness arose. In this study, in vitro biophysical and biochemical methods were utilized to elucidate the mechanistic details and evolutionary trade-offs created by the resistance mutations. The kinetics of procapsid formation was analyzed in vitromore »using wild-type, inhibitory, and experimentally evolved coat and scaffolding proteins. Our data suggest that viral fitness is correlated with in vitro assembly kinetics and demonstrate that in vivo experimental evolution can be analyzed within an in vitro biophysical context. IMPORTANCE Experimental evolution is an extremely valuable tool. Comparisons between ancestral and evolved genotypes suggest hypotheses regarding adaptive mechanisms. However, it is not always possible to rigorously test these hypotheses in vivo . We applied in vitro biophysical and biochemical methods to elucidate the mechanistic details that allowed an experimentally evolved virus to become resistant to an antiviral protein and then evolve a productive use for that protein. Moreover, our results indicate that the respective roles of scaffolding and coat proteins may have been redistributed during the evolution of a two-scaffolding-protein system. In one-scaffolding-protein virus assembly systems, coat proteins promiscuously interact to form heterogeneous aberrant structures in the absence of scaffolding proteins. Thus, the scaffolding protein controls fidelity. During ϕX174 assembly, the external scaffolding protein acts like a coat protein, self-associating into large aberrant spherical structures in the absence of coat protein, whereas the coat protein appears to control fidelity.« less
  4. Free, publicly-accessible full text available July 1, 2022
  5. Free, publicly-accessible full text available July 1, 2022
  6. Free, publicly-accessible full text available July 1, 2022
  7. Free, publicly-accessible full text available June 29, 2022
  8. Free, publicly-accessible full text available June 1, 2022
  9. Free, publicly-accessible full text available June 1, 2022
  10. Free, publicly-accessible full text available June 1, 2022