skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Assumpcao, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate telecommunication-wavelength Pockels electro-optic modulators in thin-film lithium tantalate (TFLT) with superior DC stability compared to equivalent thin-film lithium niobate (TFLN) modulators. Less than 1 dB output power fluctuation for quadrature-biased TFLT is measured compared to 5 dB with TFLN over 46 hours with 12.1 dBm input power. Our TFLT modulators maintain properties similar to those in TFLN: 3.4 Vcm half-wave voltage length product, 39 dB extinction ratio, flat RF electro-optic response from 3-50 GHz, and 0.35 dB on-chip loss. We also show low error-rate data modulation over 0-70°C with TFLT modulators and optical loss of 9 dB/m. 
    more » « less
  2. Robust, low-loss photonic packaging of on-chip nanophotonic circuits is a key enabling technology for the deployment of integrated photonics in a variety of classical and quantum technologies including optical communications and quantum communications, sensing, and transduction. To date, no process has been established that enables permanent, broadband, and cryogenically compatible coupling with sub-dB losses from optical fibers to nanophotonic circuits. Here, we report a technique for reproducibly generating a permanently packaged interface between a tapered optical fiber and nanophotonic devices on diamond with a record-low coupling loss <1 dB per facet at near-infrared wavelengths (∼730 nm) that remains stable from 300 K to 30 mK. We further demonstrate the compatibility of this technique with etched lithium niobate on insulator waveguides. The technique lifts performance limitations imposed by scattering as light transfers between photonic devices and optical fibers, paving the way for scalable integration of photonic technologies at both room and cryogenic temperatures. 
    more » « less
  3. Abstract Integrated electro-optic (EO) modulators are fundamental photonics components with utility in domains ranging from digital communications to quantum information processing. At telecommunication wavelengths, thin-film lithium niobate modulators exhibit state-of-the-art performance in voltage-length product (VπL), optical loss, and EO bandwidth. However, applications in optical imaging, optogenetics, and quantum science generally require devices operating in the visible-to-near-infrared (VNIR) wavelength range. Here, we realize VNIR amplitude and phase modulators featuringVπL’s of sub-1 V ⋅ cm, low optical loss, and high bandwidth EO response. Our Mach-Zehnder modulators exhibit aVπLas low as 0.55 V ⋅ cm at 738 nm, on-chip optical loss of ~0.7 dB/cm, and EO bandwidths in excess of 35 GHz. Furthermore, we highlight the opportunities these high-performance modulators offer by demonstrating integrated EO frequency combs operating at VNIR wavelengths, with over 50 lines and tunable spacing, and frequency shifting of pulsed light beyond its intrinsic bandwidth (up to 7x Fourier limit) by an EO shearing method. 
    more » « less