skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Asta, Dena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A very popular class of models for networks posits that each node is represented by a point in a continuous latent space, and that the probability of an edge between nodes is a decreasing function of the distance between them in this latent space. We study the embedding problem for these models, of recovering the latent positions from the observed graph. Assuming certain natural symmetry and smoothness properties, we establish the uniform convergence of the log-likelihood of latent positions as the number of nodes grows. A consequence is that the maximum likelihood embedding converges on the true positions in a certain information-theoretic sense. Extensions of these results, to recovering distributions in the latent space, and so distributions over arbitrarily large graphs, will be treated in the sequel. 
    more » « less