skip to main content


Search for: All records

Creators/Authors contains: "Atallah, Timothy L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The energetic disorder induced by fluctuating liquid environments acts in opposition to the precise control required for coherence-based sensing. Overcoming fluctuations requires a protected quantum subspace that only weakly interacts with the local environment. We report a ytterbium complex that exhibited an ultranarrow absorption linewidth in solution at room temperature with a full width at half maximum of 0.625 milli–electron volts. Using spectral hole burning, we measured an even narrower linewidth of 410 pico–electron volts at 77 kelvin. Narrow linewidths allowed low-field magnetic circular dichroism at room temperature, used to sense Earth-scale magnetic fields. These results demonstrated that ligand protection in lanthanide complexes could substantially diminish electronic state fluctuations. We have termed this system an “atomlike molecular sensor” (ALMS) and proposed approaches to improve its performance.

     
    more » « less
    Free, publicly-accessible full text available August 9, 2025
  2. Large area absorbers with localized defect emission are of interest for energy concentration via the antenna effect. Transfer between 2D and 0D quantum-confined structures is advantageous as it affords maximal lateral area antennas with continuously tunable emission. We report the quantum efficiency of energy transfer in in situ grown HgTe nanoplatelet (NPL)/quantum dot (QD) heterostructures to be near unity (>85%), while energy transfer in separately synthesized and well separated solutions of HgTe NPLs to QDs only reaches 47 ± 11% at considerably higher QD concentrations. Using Kinetic Monte Carlo simulations, we estimate an exciton diffusion constant of 1–10 cm2/s in HgTe NPLs, the same magnitude as that of 2D semiconductors. We also simulate in-solution energy transfer between NPLs and QDs, recovering an R–4 dependence consistent with 2D-0D near-field energy transfer even in randomly distributed NPL/QD mixtures. This highlights the advantage of NPLs 2D morphology and the efficiency of NPL/QD heterostructures and mixtures for energy harvesting. 
    more » « less
    Free, publicly-accessible full text available October 26, 2024
  3. Excitonic chromophore aggregates have wide-ranging applicability in fields such as imaging and energy harvesting; however their rational design requires adapting principles of self-assembly to the requirements of excited state coupling.

     
    more » « less
  4. Molecular aggregates with long-range excitonic couplings have drastically different photophysical properties compared to their monomer counterparts. From Kasha's model for one-dimensional systems, positive or negative excitonic couplings lead to blue or red-shifted optical spectra with respect to the monomers, labeled H-and J-aggregates, respectively. The overall excitonic couplings in higher dimensional systems are much more complicated and cannot be simply classified from their spectral shifts alone. Here, we provide a unified classification for extended 2D aggregates using temperature dependent peak shifts, thermal broadening, and quantum yields. We discuss the examples of six 2D aggregates with J-like absorption spectra but quite drastic changes in quantum yields and superradiance. We find the origin of the differences is, in fact, a different excitonic band structure where the bright state is lower energy than the monomer but still away from the band edge. We call this an “I-aggregate.” Our results provide a description of the complex excitonic behaviors that cannot be explained solely on Kasha's model. Furthermore, such properties can be tuned with the packing geometries within the aggregates providing supramolecular pathways for controlling them. This will allow for precise optimizations of aggregate properties in their applications across the areas of optoelectronics, photonics, excitonic energy transfer, and shortwave infrared technologies. 
    more » « less
  5. null (Ed.)
  6. Methods to red-shift fluorophores have garnered considerable interest due to the broad utility of low energy light. The incorporation of silicon into xanthene and coumarin scaffolds has resulted in an array of visible and near-infrared fluorophores. Here, we extend this approach to polymethine dyes, another popular fluorophore class, performing experimental and computational analyses. We found that when oxygen was replaced with SiMe 2 , bathochromic shifts of up to 121 nm and fluorophores with emission above 900 nm were achieved. 
    more » « less