skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Atif, Touheed A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the task of communicating a generic bivariate function of two classical correlated sources over a Classical-Quantum Multiple Access Channel (CQ-MAC). The two sources are observed at the encoders of the CQ-MAC, and the decoder aims at reconstructing a bivariate function from the received quantum state. We first propose a coding scheme based on asymptotically good algebraic structured codes, in particular, nested coset codes, and provide a set of sufficient conditions for the reconstruction of the function of the sources over a CQ- MAC. The proposed technique enables the decoder to recover the desired function without recovering the sources themselves. We further improve this by employing a coding scheme based on a classical superposition of algebraic structured codes and unstructured codes. This coding scheme allows exploiting the symmetric structure common amongst the sources and also leverage the asymmetries. We derive a new set of sufficient conditions that strictly enlarges the largest known set of sources whose function can be reconstructed over any given CQ-MAC, and identify examples demonstrating the same. We provide these conditions in terms of single-letter quantum information- theoretic quantities. 
    more » « less