skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Atkinson, Daria W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Assemblies of one-dimensional filaments appear in a wide range of physical systems: from biopolymer bundles, columnar liquid crystals, and superconductor vortex arrays; to familiar macroscopic materials, like ropes, cables, and textiles. Interactions between the constituent filaments in such systems are most sensitive to thedistance of closest approachbetween the central curves which approximate their configuration, subjecting these distinct assemblies to common geometric constraints. In this paper, we consider two distinct notions of constant spacing in multi-filament packings in R 3 :equidistance, where the distance of closest approach is constant along the length of filament pairs; andisometry, where the distances of closest approach between all neighboring filaments are constant and equal. We show that, although any smooth curve in R 3 permits one dimensional families of collinear equidistant curves belonging to a ruled surface, there are only two families of tangent fields with mutually equidistant integral curves in R 3 . The relative shapes and configurations of curves in these families are highly constrained: they must be either (isometric) developable domains, which can bend, but not twist; or (non-isometric) constant-pitch helical bundles, which can twist, but not bend. Thus, filament textures that are simultaneously bent and twisted, such as twisted toroids of condensed DNA plasmids or wire ropes, are doubly frustrated: twist frustrates constant neighbor spacing in the cross-section, while non-equidistance requires additional longitudinal variations of spacing along the filaments. To illustrate the consequences of the failure of equidistance, we compare spacing in three ‘almost equidistant’ ansatzes for twisted toroidal bundles and use our formulation of equidistance to construct upper bounds on the growth of longitudinal variations of spacing with bundle thickness. 
    more » « less