Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
With the fast development of Fifth-/Sixth-Generation (5G/6G) communications and the Internet of Video Things (IoVT), a broad range of mega-scale data applications emerge (e.g., all-weather all-time video). These network-based applications highly depend on reliable, secure, and real-time audio and/or video streams (AVSs), which consequently become a target for attackers. While modern Artificial Intelligence (AI) technology is integrated with many multimedia applications to help enhance its applications, the development of General Adversarial Networks (GANs) also leads to deepfake attacks that enable manipulation of audio or video streams to mimic any targeted person. Deepfake attacks are highly disturbing and can mislead the public, raising further challenges in policy, technology, social, and legal aspects. Instead of engaging in an endless AI arms race “fighting fire with fire”, where new Deep Learning (DL) algorithms keep making fake AVS more realistic, this paper proposes a novel approach that tackles the challenging problem of detecting deepfaked AVS data leveraging Electrical Network Frequency (ENF) signals embedded in the AVS data as a fingerprint. Under low Signal-to-Noise Ratio (SNR) conditions, Short-Time Fourier Transform (STFT) and Multiple Signal Classification (MUSIC) spectrum estimation techniques are investigated to detect the Instantaneous Frequency (IF) of interest. For reliable authentication, we enhanced the ENF signal embedded through an artificial power source in a noisy environment using the spectral combination technique and a Robust Filtering Algorithm (RFA). The proposed signal estimation workflow was deployed on a continuous audio/video input for resilience against frame manipulation attacks. A Singular Spectrum Analysis (SSA) approach was selected to minimize the false positive rate of signal correlations. Extensive experimental analysis for a reliable ENF edge-based estimation in deepfaked multimedia recordings is provided to facilitate the need for distinguishing artificially altered media content.more » « less
-
Rapid advances in the Internet of Video Things (IoVT) deployment in modern smart cities has enabled secure infrastructures with minimal human intervention. However, attacks on audio-video inputs affect the reliability of large-scale multimedia surveillance systems as attackers are able to manipulate the perception of live events. For example, Deepfake audio/video attacks and frame duplication attacks can cause significant security breaches. This paper proposes a Lightweight Environmental Fingerprint Consensus based detection of compromised smart cameras in edge surveillance systems (LEFC). LEFC is a partial decentralized authentication mechanism that leverages Electrical Network Frequency (ENF) as an environmental fingerprint and distributed ledger technology (DLT). An ENF signal carries randomly fluctuating spatio-temporal signatures, which enable digital media authentication. With the proposed DLT consensus mechanism named Proof-of-ENF (PoENF) as a backbone, LEFC can estimate and authenticate the media recording and detect byzantine nodes controlled by the perpetrator. The experimental evaluation shows feasibility and effectiveness of proposed LEFC scheme under a distributed byzantine network environment.more » « less
-
Blockchain technology has been recognized as a promising solution to enhance the security and privacy of Internet of Things (IoT) and Edge Computing scenarios. Taking advantage of the Proof-of-Work (PoW) consensus protocol, which solves a computation intensive hashing puzzle, Blockchain ensures the security of the system by establishing a digital ledger. However, the computation intensive PoW favors members possessing more computing power. In the IoT paradigm, fairness in the highly heterogeneous network edge environments must consider devices with various constraints on computation power. Inspired by the advanced features of Digital Twins (DT), an emerging concept that mirrors the lifespan and operational characteristics of physical objects, we propose a novel Miner Twins (MinT) architecture to enable a fair PoW consensus mechanism for blockchains in IoT environments. MinT adopts an edge-fog-cloud hierarchy. All physical miners of the blockchain are deployed as microservices on distributed edge devices, while fog/cloud servers maintain digital twins that periodically update miners’ running status. By timely monitoring of a miner’s footprint that is mirrored by twins, a lightweight Singular Spectrum Analysis (SSA)-based detection achieves the identification of individual misbehaved miners that violate fair mining. Moreover, we also design a novel Proof-of-Behavior (PoB) consensus algorithm to detect dishonest miners that collude to control a fair mining network. A preliminary study is conducted on a proof-of-concept prototype implementation, and experimental evaluation shows the feasibility and effectiveness of the proposed MinT scheme under a distributed byzantine network environment.more » « less