skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Avery, Aaron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Massive submarine basalt flows were sampled at five sites on the Tristan‐Gough‐Walvis hotspot track in the South Atlantic by International Oceanic Discovery Program Expeditions 391/397T, where the plume was interacting with a mid‐ocean ridge, a setting similar to that the of modern Iceland. High resolution XRF core scans document significant internal chemical variations with depth in these flows. Some of this reflects basal olivine accumulation. However, some examples have “scallop‐shaped” patterns that are interpreted to represent influxes of new magma during flow lobe inflation with successive lava injections focused toward the base of the flow unit. Olivine concentration in the deeper parts of the flow is interpreted to reflect top‐down tapping of a vertically zoned magma chamber, with the upper part of the chamber erupting first, and successive eruptive pulses tapping progressively deeper levels of the stratified chamber. The occurrence of massive submarine lava flows requires high eruptive fluxes relative to pillow lava formation. Propagation of these massive flows is favored by (a) high sea water confining pressures, which inhibit vesiculation and keep effective viscosity low and dissolved volatile content high, and (b) chill zones and thick viscoelastic crusts of quenched lava on the flow tops, which effectively insulate the flow interior from ambient temperatures. The formation of a thin film of super‐heated steam on the upper flow surface may similarly enhance the insulation. Evidence suggests that similar massive flows on the seafloor may extend many kilometers from their vents. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Raheem, Dinarzarde C (Ed.)
    In 2022, the accepted name for a marine gastropod species from Florida until then known as Conus an- abathrum Crosse, 1865, was replaced by C. floridanus Gabb, 1869. The main argument was that the type of C. anabathrum , a specimen with no type locality in the description, actually represents the eastern Pacific species C. scalaris Valenciennes, 1832. This allocation of the type of C. anabathrum to an eastern Pacific taxon was based on several factors, with shell shape as the main determinant. We demonstrate via geometric mor- phometrics that the type of C. anabathrum actually falls outside the morphospace of C. scalaris , belonging instead to the morphospace of the Floridian taxon. We also discuss other arguments presented to assign the type of C. anabathrum to the eastern Pacific species. These discussions and our geometric morphometric an- alytical results demonstrate that the type of C. anabathrum actually represents the Floridian species, and that C. anabathrum should be the accepted name. 
    more » « less
  3. This talk will describe the work of the CPN Pre-Impact Baselines Working Group to leverage the wealth of paleoecological and historical ecological data to facilitate estimation of pre-impact species distribution baselines. Species conservation has long focused on preventing human-driven extinctions, and over the past 50 years conservation success has been measured using changes in species’ extinction risk. However, recently calls have been made for a parallel focus on species recovery, and on developing metrics with which to assess its achievement. This call to action within the conservation community is fuelled in part by the recognition that baselines of species abundance and distribution have shifted dramatically across human generations with globally detectable human impacts on ecosystems beginning at least several thousand years ago. While assessment of extinction risk generally only considers species’ change over the past few decades, assessment of recovery requires considering change over centuries to millennia. This requires identifying the baseline status at the time when humans first became a major factor influencing the abundance and distribution of a species. Two new frameworks for considering conservation status relative to a species’ pre-impact baseline have been recently released: EPOCH (Evaluation of POpulation CHange), and the IUCN Green Status of Species. These frameworks have been lauded as moving conservation in a much-needed direction, but there is also concern about whether these methods will be applicable to any but a few well-known, charismatic species. Using a combination of modelling approaches, we are working to estimate species pre-impact distributions in a way that is accessible to conservation practitioners, helping to unshift the baseline and bring species recovery into the mainstream. 
    more » « less