skip to main content

Search for: All records

Creators/Authors contains: "Avigal, Yahav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mechanical search, the finding and extracting of a known target object from a cluttered environment, is a key challenge in automating warehouse, home, retail, and industrial tasks. In this paper, we consider contexts in which occluding objects are to remain untouched, thus minimizing disruptions and avoiding toppling. We assume a 6-DOF robot with an RGBD camera and unicontact suction gripper mounted on its wrist. With this setup, the robot can move both camera and gripper in order to identify a suitable approach vector, reach in to achieve a suction grasp of the target object, and extract it. We present AVPLUG: Approach Vector PLanning for Unicontact Grasping, an algorithm that uses an octree occupancy model and Minkowski sum computation to find a collision-free grasp approach vector. Experiments in simulation and with a physical Fetch robot suggest that AVPLUG finds an approach vector up to 20× faster than a baseline search policy.
  2. Consumer demand for augmented reality (AR) in mobile phone applications, such as the Apple ARKit. Such applications have potential to expand access to robot grasp planning systems such as Dex-Net. AR apps use structure from motion methods to compute a point cloud from a sequence of RGB images taken by the camera as it is moved around an object. However, the resulting point clouds are often noisy due to estimation errors. We present a distributed pipeline, DexNet AR, that allows point clouds to be uploaded to a server in our lab, cleaned, and evaluated by Dex-Net grasp planner to generate a grasp axis that is returned and displayed as an overlay on the object. We implement Dex-Net AR using the iPhone and ARKit and compare results with those generated with high-performance depth sensors. The success rates with AR on harder adversarial objects are higher than traditional depth images.
  3. Robots for picking in e-commerce warehouses require rapid computing of efficient and smooth robot arm motions between varying configurations. Recent results integrate grasp analysis with arm motion planning to compute optimal smooth arm motions; however, computation times on the order of tens of seconds dominate motion times. Recent advances in deep learning allow neural networks to quickly compute these motions; however, they lack the precision required to produce kinematically and dynamically feasible motions. While infeasible, the network-computed motions approximate the optimized results. The proposed method warm starts the optimization process by using the approximate motions as a starting point from which the optimizing motion planner refines to an optimized and feasible motion with few iterations. In experiments, the proposed deep learning–based warm-started optimizing motion planner reduces compute and motion time when compared to a sampling-based asymptotically optimal motion planner and an optimizing motion planner. When applied to grasp-optimized motion planning, the results suggest that deep learning can reduce the computation time by two orders of magnitude (300×), from 29 s to 80 ms, making it practical for e-commerce warehouse picking.