skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ayantayo, Abdul H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural networks (DNNs) are increasingly used in critical applications like autonomous vehicles and medical diagnosis, where accuracy and reliability are crucial. However, debugging DNNs is challenging and expensive, often leading to unpredictable behavior and performance issues. Identifying and diagnosing bugs in DNNs is difficult due to complex and obscure failure symptoms, which are data-driven and compute-intensive. To address this, we propose TransBug a framework that combines transformer models for feature extraction with deep learning models for classification to detect and diagnose bugs in DNNs. We employ a pre-trained transformer model, which has been trained in programming languages, to extract semantic features from both faulty and correct DNN models. We then use these extracted features in a separate deep-learning model to determine whether the code contains bugs. If a bug is detected, the model further classifies the type of bug. By leveraging the powerful feature extraction capabilities of transformers, we capture relevant characteristics from the code, which are then used by a deep learning model to identify and classify various types of bugs. This combination of transformer-based feature extraction and deep learning classification allows our method to accurately link bug symptoms to their causes, enabling developers to take targeted corrective actions. Empirical results show that the TransBug shows an accuracy of 81% for binary classification and 91% for classifying bug types. 
    more » « less
    Free, publicly-accessible full text available December 15, 2025