skip to main content


Search for: All records

Creators/Authors contains: "Aydi, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT V906 Carinae was one of the best observed novae of recent times. It was a prolific dust producer and harboured shocks in the early evolving ejecta outflow. Here, we take a close look at the consequences of these early interactions through study of high-resolution Ultraviolet and Visual Echelle spectrograph spectroscopy of the nebular stage and extrapolate backwards to investigate how the final structure may have formed. A study of ejecta geometry and shaping history of the structure of the shell is undertaken following a spectral line $\rm {\small SHAPE}$ model fit. A search for spectral tracers of shocks in the nova ejecta is undertaken and an analysis of the ionized environment. Temperature, density, and abundance analyses of the evolving nova shell are presented. 
    more » « less
  2. ABSTRACT

    We present early spectral observations of the very slow Galactic nova Gaia22alz, over its gradual rise to peak brightness that lasted 180 d. During the first 50 d, when the nova was only 3–4 mag above its normal brightness, the spectra showed narrow (FWHM ≈ 400 km s−1) emission lines of H Balmer, He i, He ii, and C iv but no P Cygni absorption. A few weeks later, the high-excitation He ii and C iv lines disappeared, and P Cygni profiles of Balmer, He i, and eventually Fe ii lines emerged, yielding a spectrum typical of classical novae before peak. We propose that the early (first 50 d) spectra of Gaia22alz, particularly the emission lines with no P Cygni profiles, are produced in the white dwarf’s optically thin envelope or accretion disc, reprocessing ultraviolet and potentially X-ray emission from the white dwarf after a dramatic increase in the rate of thermonuclear reactions, during a phase known as the ‘early X-ray/UV flash’. If true, this would be one of the rare times that the optical signature of the early X-ray/UV flash has been detected. While this phase might last only a few hours in other novae and thus be easily missed, it was possible to detect in Gaia22alz due to its very slow and gradual rise and thanks to the efficiency of new all-sky surveys in detecting transients on their rise. We also consider alternative scenarios that could explain the early spectral features of Gaia22alz and its gradual rise.

     
    more » « less
  3. Abstract

    We present the first estimate of the Galactic nova rate based on optical transient surveys covering the entire sky. Using data from the All-Sky Automated Survey for Supernovae (ASAS-SN) and Gaia—the only two all-sky surveys to report classical nova candidates—we find 39 confirmed Galactic novae and 7 additional unconfirmed candidates discovered from 2019 to 2021, yielding a nova discovery rate of ≈14 yr−1. Using accurate Galactic stellar mass models and three-dimensional dust maps and incorporating realistic nova light curves, we have built a sophisticated Galactic nova model to estimate the fraction of Galactic novae discovered by these surveys over this time period. The observing capabilities of each survey are distinct: the high cadence of ASAS-SN makes it sensitive to fast novae, while the broad observing filter and high spatial resolution of Gaia make it more sensitive to highly reddened novae across the entire Galactic plane and bulge. Despite these differences, we find that ASAS-SN and Gaia give consistent Galactic nova rates, with a final joint nova rate of 26 ± 5 yr−1. This inferred nova rate is substantially lower than found by many other recent studies. Critically assessing the systematic uncertainties in the Galactic nova rate, we argue that the role of faint, fast-fading novae has likely been overestimated, but that subtle details in the operation of transient alert pipelines can have large, sometimes unappreciated effects on transient recovery efficiency. Our predicted nova rate can be directly tested with forthcoming red/near-infrared transient surveys in the southern hemisphere.

     
    more » « less
  4. Abstract We present a detailed study of the 2019 outburst of the cataclysmic variable V1047 Cen, which hosted a classical nova eruption in 2005. The peculiar outburst occurred 14 yr after the classical nova event and lasted for more than 400 days, reaching an amplitude of around 6 magnitudes in the optical. Early spectral follow-up revealed what could be a dwarf nova (accretion disk instability) outburst. However, the outburst duration, high-velocity (>2000 km s −1 ) features in the optical line profiles, luminous optical emission, and presence of prominent long-lasting radio emission together suggest a phenomenon more exotic and energetic than a dwarf nova outburst. The outburst amplitude, radiated energy, and spectral evolution are also not consistent with a classical nova eruption. There are similarities between V1047 Cen’s 2019 outburst and those of classical symbiotic stars, but pre-2005 images of the field of V1047 Cen indicate that the system likely hosts a dwarf companion, implying a typical cataclysmic variable system. Based on our multiwavelength observations, we suggest that the outburst may have started with a brightening of the disk due to enhanced mass transfer or disk instability, possibly leading to enhanced nuclear shell burning on the white dwarf, which was already experiencing some level of quasi-steady shell burning. This eventually led to the generation of a wind and/or bipolar, collimated outflows. The 2019 outburst of V1047 Cen appears to be unique, and nothing similar has been observed in a typical cataclysmic variable system before, hinting at a potentially new astrophysical phenomenon. 
    more » « less
  5. null (Ed.)
  6. Abstract There is a long-standing discrepancy between the observed Galactic classical nova rate of ∼10 yr −1 and the predicted rate from Galactic models of ∼30–50 yr −1 . One explanation for this discrepancy is that many novae are hidden by interstellar extinction, but the degree to which dust can obscure novae is poorly constrained. We use newly available all-sky three-dimensional dust maps to compare the brightness and spatial distribution of known novae to that predicted from relatively simple models in which novae trace Galactic stellar mass. We find that only half (53%) of the novae are expected to be easily detectable ( g ≲ 15) with current all-sky optical surveys such as the All-Sky Automated Survey for Supernovae (ASAS-SN). This fraction is much lower than previously estimated, showing that dust does substantially affect nova detection in the optical. By comparing complementary survey results from the ASAS-SN, OGLE-IV, and Palomar Gattini IR surveys using our modeling, we find a tentative Galactic nova rate of ∼30 yr −1 , though this could be as high as ∼40 yr −1 , depending on the assumed distribution of novae within the Galaxy. These preliminary estimates will be improved in future work through more sophisticated modeling of nova detection in ASAS-SN and other surveys. 
    more » « less
  7. null (Ed.)
  8. ABSTRACT

    Classical novae are shock-powered multiwavelength transients triggered by a thermonuclear runaway on an accreting white dwarf. V1674 Her is the fastest nova ever recorded (time to declined by two magnitudes is t2 = 1.1 d) that challenges our understanding of shock formation in novae. We investigate the physical mechanisms behind nova emission from GeV γ-rays to cm-band radio using coordinated Fermi-LAT, NuSTAR, Swift, and VLA observations supported by optical photometry. Fermi-LAT detected short-lived (18 h) 0.1–100 GeV emission from V1674 Her that appeared 6 h after the eruption began; this was at a level of (1.6 ± 0.4) × 10−6 photons cm−2 s−1. Eleven days later, simultaneous NuSTAR and Swift X-ray observations revealed optically thin thermal plasma shock-heated to kTshock = 4 keV. The lack of a detectable 6.7 keV Fe Kα emission suggests super-solar CNO abundances. The radio emission from V1674 Her was consistent with thermal emission at early times and synchrotron at late times. The radio spectrum steeply rising with frequency may be a result of either free-free absorption of synchrotron and thermal emission by unshocked outer regions of the nova shell or the Razin–Tsytovich effect attenuating synchrotron emission in dense plasma. The development of the shock inside the ejecta is unaffected by the extraordinarily rapid evolution and the intermediate polar host of this nova.

     
    more » « less
  9. null (Ed.)
    ABSTRACT We characterize the extreme heartbeat star system MACHO 80.7443.1718 in the Large Magellanic Cloud using Transiting Exoplanet Survey Satellite (TESS) photometry and spectroscopic observations from the Magellan Inamori Kyocera Echelle (MIKE) and SOAR Goodman spectographs. MACHO 80.7443.1718 was first identified as a heartbeat star system in the All-Sky Automated Survey for SuperNovae (ASAS-SN) with $P_{\rm orb}=32.836\pm 0.008\, {\rm d}$. MACHO 80.7443.1718 is a young (∼6 Myr), massive binary, composed of a B0 Iae supergiant with $M_1 \simeq 35\, {\rm M}_\odot$ and an O9.5V secondary with $M_2 \simeq 16\, {\rm M}_\odot$ on an eccentric (e = 0.51 ± 0.03) orbit. In addition to having the largest variability amplitude amongst all known heartbeats stars, MACHO 80.7443.1718 is also one of the most massive heartbeat stars yet discovered. The B[e] supergiant has Balmer emission lines and permitted/forbidden metallic emission lines associated with a circumstellar disc. The disc rapidly dissipates at periastron that could indicate mass transfer to the secondary, but re-emerges immediately following periastron passage. MACHO 80.7443.1718 also shows tidally excited oscillations at the N = 25 and N = 41 orbital harmonics and has a rotational period of 4.4 d. 
    more » « less
  10. null (Ed.)