- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ayoubi, Sara (2)
-
Bronzino, Francesco (2)
-
Feamster, Nick (2)
-
Schmitt, Paul (2)
-
Teixeira, Renata (2)
-
Kim, Hyojoon (1)
-
Martins, Guilherme (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Network management often relies on machine learning to make predictions about performance and security from network traffic. Often, the representation of the traffic is as important as the choice of the model. The features that the model relies on, and the representation of those features, ultimately determine model accuracy, as well as where and whether the model can be deployed in practice. Thus, the design and evaluation of these models ultimately requires understanding not only model accuracy but also the systems costs associated with deploying the model in an operational network. Towards this goal, this paper develops a new framework and system that enables a joint evaluation of both the conventional notions of machine learning performance (e.g., model accuracy) and the systems-level costs of different representations of network traffic. We highlight these two dimensions for two practical network management tasks, video streaming quality inference and malware detection, to demonstrate the importance of exploring different representations to find the appropriate operating point. We demonstrate the benefit of exploring a range of representations of network traffic and present Traffic Refinery, a proof-of-concept implementation that both monitors network traffic at 10~Gbps and transforms traffic in real time to produce a variety of feature representations for machine learning. Traffic Refinery both highlights this design space and makes it possible to explore different representations for learning, balancing systems costs related to feature extraction and model training against model accuracy.more » « less
-
Inferring Streaming Video Quality from Encrypted Traffic: Practical Models and Deployment ExperienceBronzino, Francesco ; Schmitt, Paul ; Ayoubi, Sara ; Martins, Guilherme ; Teixeira, Renata ; Feamster, Nick ( , Proceedings of the ACM on Measurement and Analysis of Computing Systems)null (Ed.)Inferring the quality of streaming video applications is important for Internet service providers, but the fact that most video streams are encrypted makes it difficult to do so. We develop models that infer quality metrics (\ie, startup delay and resolution) for encrypted streaming video services. Our paper builds on previous work, but extends it in several ways. First, the models work in deployment settings where the video sessions and segments must be identified from a mix of traffic and the time precision of the collected traffic statistics is more coarse (\eg, due to aggregation). Second, we develop a single composite model that works for a range of different services (\ie, Netflix, YouTube, Amazon, and Twitch), as opposed to just a single service. Third, unlike many previous models, our models perform predictions at finer granularity (\eg, the precise startup delay instead of just detecting short versus long delays) allowing to draw better conclusions on the ongoing streaming quality. Fourth, we demonstrate the models are practical through a 16-month deployment in 66 homes and provide new insights about the relationships between Internet "speed'' and the quality of the corresponding video streams, for a variety of services; we find that higher speeds provide only minimal improvements to startup delay and resolution.more » « less