skip to main content

Search for: All records

Creators/Authors contains: "Ayres, Matthew P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this study, we analyzed territory sizes of seven migratory songbirds occupying a 10-hectare plot in the Hubbard Brook Experimental Forest, New Hampshire, USA over a 52-year period (1969-2021). All species varied in abundance over the duration of the study, some dramatically. Changes in territory sizes were inversely related to changes in abundance within the study plot despite differences in habitat preference, supporting the ideal free distribution. Territory sizes varied two-fold within a year across species. Results contribute to understanding how variation in territory size relates to 1) how habitat use changes with bird abundance and 2) the evolution of territory size. This dataset includes data, R code, and spatial files supporting this study. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Associated datasets in the data catalog: Holmes, R.T., N.L. Rodenhouse, and M.T. Hallworth. 2022. Bird Abundances at the Hubbard Brook Experimental Forest (1969-present) and on three replicate plots (1986-2000) in the White Mountain National Forest ver 8. Environmental Data Initiative. (Accessed 2023-12-17). Zammarelli, M.B. and R.T. Holmes. 2023. Hubbard Brook Experimental Forest: 10-ha bird plot territory maps, 1969 - 2021 ver 1. Environmental Data Initiative. (Accessed 2024-01-11). 
    more » « less
  2. Free, publicly-accessible full text available November 1, 2024
  3. Arthropods are active during the winter in temperate regions. Many use the seasonal snowpack as a buffer against harsh ambient conditions and remain active in a refugium known as the subnivium. While the use of the subnivium by insects and other arthropods is well-established, far less is known about winter community composition, abundance, biomass, and diversity and how these characteristics compare with the community in the summer. Understanding subnivean communities is especially important given observed and anticipated changes in snowpack depth and duration with changing climate. We studied winter and summer insects and other arthropods using pitfall trapping in northern New Hampshire, where snowpack is still relatively intact. We found that compositions of the subnivium and summer arthropod communities differed. The subnivium arthropod community featured moderate levels of richness and other measures of diversity that tended to be lower than in the summer community. More striking, the subnivium community was much lower in overall abundance and biomass than the summer community. Interestingly, some groups and species of arthropods were dominant in the subnivium but either rare or absent in summer collections. These putative “subnivium specialists” included one spider (order: Araneae), Cicurina brevis (Emerton, 1890), and three rove beetles (order: Coleoptera, family: Staphylinidae) Arpedium cribratum Fauvel, 1878, Lesteva pallipes LeConte, 1863, and Porrhodites inflatus (Hatch, 1957). This study provides a detailed account of the subnivium arthropod community, presents novel concepts, and establishes baseline information on arthropod communities in the North American northeastern temperate forest. 
    more » « less
  4. Garnas, Jeff R. (Ed.)
    Abstract Some introduced species cause severe damage, although the majority have little impact. Robust predictions of which species are most likely to cause substantial impacts could focus efforts to mitigate those impacts or prevent certain invasions entirely. Introduced herbivorous insects can reduce crop yield, fundamentally alter natural and managed forest ecosystems, and are unique among invasive species in that they require certain host plants to succeed. Recent studies have demonstrated that understanding the evolutionary history of introduced herbivores and their host plants can provide robust predictions of impact. Specifically, divergence times between hosts in the native and introduced ranges of a nonnative insect can be used to predict the potential impact of the insect should it establish in a novel ecosystem. However, divergence time estimates vary among published phylogenetic datasets, making it crucial to understand if and how the choice of phylogeny affects prediction of impact. Here, we tested the robustness of impact prediction to variation in host phylogeny by using insects that feed on conifers and predicting the likelihood of high impact using four different published phylogenies. Our analyses ranked 62 insects that are not established in North America and 47 North American conifer species according to overall risk and vulnerability, respectively. We found that results were robust to the choice of phylogeny. Although published vascular plant phylogenies continue to be refined, our analysis indicates that those differences are not substantial enough to alter the predictions of invader impact. Our results can assist in focusing biosecurity programs for conifer pests and can be more generally applied to nonnative insects and their potential hosts by prioritizing surveillance for those insects most likely to be damaging invaders. 
    more » « less
  5. One promising approach to mitigate the negative impacts of insect pests in forests is to adapt forestry practices to create ecosystems that are more resistant and resilient to biotic disturbances. At the stand scale, local stand management practices often cause idiosyncratic effects on forest pests depending on the environmental context and the focal pest species. However, increasing tree diversity appears to be a general strategy for reducing pest damage across several forest types. At the landscape scale, increasing forest heterogeneity (e.g., intermixing different forest types and/or age classes) represents a promising frontier for improving forest resistance and resilience and for avoiding large-scale outbreaks. In addition to their greater resilience, heterogeneous forest landscapes frequently support a wide range of ecosystem functions and services. A challenge will be to develop cooperation and coordination among multiple actors at spatial scales that transcend historical practices in forest management. 
    more » « less
  6. Yavitt, Joseph B. (Ed.)
    Conspecific negative density dependence (CNDD) promotes tree species diversity by reducing recruitment near conspecific adults due to biotic feedbacks from herbivores, pathogens, or competitors. While this process is well-described in tropical forests, tests of temperate tree species range from strong positive to strong negative density dependence. To explain this, several studies have suggested that tree species traits may help predict the strength and direction of density dependence: for example, ectomycorrhizal-associated tree species typically exhibit either positive or weaker negative conspecific density dependence. More generally, the strength of density dependence may be predictably related to other species-specific ecological attributes such as shade tolerance, or the relative local abundance of a species. To test the strength of density dependence and whether it affects seedling community diversity in a temperate forest, we tracked the survival of seedlings of three ectomycorrhizal-associated species experimentally planted beneath conspecific and heterospecific adults on the Prospect Hill tract of the Harvard Forest, in Massachusetts, USA. Experimental seedling survival was always lower under conspecific adults, which increased seedling community diversity in one of six treatments. We compared these results to evidence of CNDD from observed sapling survival patterns of 28 species over approximately 8 years in an adjacent 35-ha forest plot. We tested whether species-specific estimates of CNDD were associated with mycorrhizal association, shade tolerance, and local abundance. We found evidence of significant, negative conspecific density dependence (CNDD) in 23 of 28 species, and positive conspecific density dependence in two species. Contrary to our expectations, ectomycorrhizal-associated species generally exhibited stronger (e.g., more negative) CNDD than arbuscular mycorrhizal-associated species. CNDD was also stronger in more shade-tolerant species but was not associated with local abundance. Conspecific adult trees often have a negative influence on seedling survival in temperate forests, particularly for tree species with certain traits. Here we found strong experimental and observational evidence that ectomycorrhizal-associating species consistently exhibit CNDD. Moreover, similarities in the relative strength of density dependence from experiments and observations of sapling mortality suggest a mechanistic link between negative effects of conspecific adults on seedling and sapling survival and local tree species distributions. 
    more » « less
  7. Numbers and lengths of Lepidoptera larvae (caterpillars, all species) were censused on shrub level foliage at biweekly intervals from late May/early June through late July/early August each year. Measurements were conducted on the Main bird plot in the Hubbard Brook Experimental Forest and on three additional plots within the White Mountain National Forest from 1986-1997. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)
    ●Fine roots and mycorrhizal fungi may either stimulate leaf litter decomposition by providing free‐living decomposers with root‐derived carbon, or may slow decomposition through nutrient competition between mycorrhizal and saprotrophic fungi. ●We reduced the presence of fine roots and their associated mycorrhizal fungi in a northern hardwood forest in New Hampshire, USA by soil trenching. Plots spanned a mycorrhizal gradient from 96% arbuscular mycorrhizal (AM) associations to 100% ectomycorrhizal (ECM)‐associated tree basal area. We incubated four species of leaf litter within these plots in areas with reduced access to roots and mycorrhizal fungi and in adjacent areas with intact roots and mycorrhizal fungi. ●Over a period of 608 d, we found that litter decayed more rapidly in the presence of fine roots and mycorrhizal hyphae regardless of the dominant tree mycorrhizal association. Root and mycorrhizal exclusion reduced the activity of acid phosphatase on decomposing litter. ●Our results indicate that both AM‐ and ECM‐associated fine roots stimulate litter decomposition in this system. These findings suggest that the effect of fine roots and mycorrhizal fungi on litter decay in a particular ecosystem likely depends on whether interactions between mycorrhizal roots and saprotrophic fungi are antagonistic or facilitative. 
    more » « less
  10. Recent work suggests mycorrhizal fungi are important drivers of soil organic matter dynamics; however, whether this is a result of the fungi themselves or related traits of their host trees remains unclear. We evaluated how tree mycorrhizal associations and foliar chemistry influence mineral-associated organic matter (MAOM) and particulate organic matter (POM) in temperate forests of northern New England, USA. We measured carbon (C) and nitrogen (N) concentrations and C:N of three soil density fractions beneath six tree species that vary in both mycorrhizal association and foliar chemistry. We found a significant decline in the concentration of MAOM C and N with increasing foliar C:N in soil beneath tree species with arbuscular mycorrhizal (AM), but not ectomycorrhizal (ECM) fungi. The C:N of POM and MAOM was positively associated with the foliar C:N of the dominant tree species in a forest, and MAOM C:N was also higher beneath ECM- rather than AM-associated tree species. These results add to the growing body of support for mycorrhizal fungi as predictors of soil C and N dynamics, and suggest that C concentration in the MAOM fraction is more sensitive to organic matter chemistry beneath AM-associated tree species. Because MAOM decomposition is thought to be less responsive than POM decomposition to changes in soil temperature and moisture, differences in the tendency of AM- vs. ECM-dominated forests to support MAOM formation and persistence may lead to systematic differences in the response of these forest types to ongoing climate change. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less