skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Azalee_Bostroem, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.Core-collapse supernovae (CCSNe) may have contributed a significant amount of dust in the early Universe. Freshly formed coolant molecules (e.g., CO) and warm dust can be found in CCSNe as early as ∼100 d after the SN explosion, allowing the study of their evolution with time series observations. Aims.Through study of the Type II SN 2023ixf, we aim to investigate the temporal evolution of the temperature, velocity, and mass of CO and compare them with other CCSNe, exploring their implications for the dust formation in CCSNe. From observations of velocity profiles of lines of other species (e.g., H and He), we also aim to characterize and understand the interaction of the SN ejecta with preexisting circumstellar material (CSM). Methods.We present a time series of 16 near-infrared spectra of SN 2023ixf from 9 to 307 d, taken with multiple instruments: Gemini/GNIRS, Keck/NIRES, IRTF/SpeX, and MMT/MMIRS. Results.The early (t ≲ 70 d) spectra indicate interaction between the expanding ejecta and nearby CSM. Att ≲ 20 d, intermediate-width line profiles corresponding to the ejecta-wind interaction are superposed on evolving broad P Cygni profiles. We find intermediate-width and narrow lines in the spectra untilt ≲ 70 d, which suggest continued CSM interaction. We also observe and discuss high-velocity absorption features in Hαand Hβline profiles formed by CSM interaction. The spectra contain CO first overtone emission between 199 and 307 d after the explosion. We modeled the CO emission and found the CO to have a higher velocity (3000–3500 km s−1) than that in Type II-pec SN 1987A (1800–2000 km s−1) during similar phases (t = 199 − 307 d) and a comparable CO temperature to SN 1987A. A flattened continuum at wavelengths greater than 1.5 μm accompanies the CO emission, suggesting that the warm dust is likely formed in the ejecta. The warm dust masses are estimated to be on the order of ∼10−5 M
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. We present an optical photometric and spectroscopic analysis of the fast-declining hydrogen-rich Type II supernova (SN) 2019nyk. The light curve properties of SN 2019nyk align well with those of other fast-declining Type II SNe, such as SNe 2013by and 2014G. SN 2019nyk exhibits a peak absolute magnitude of −18.09 ± 0.17 mag in theVband, followed by a rapid decline at 2.84  ±  0.03 mag (100 d)−1during the recombination phase. The early spectra of SN 2019nyk exhibit high-ionisation emission features as well as narrow H Balmer lines, persisting until 4.1 d since explosion, indicating the presence of circumstellar material (CSM) in close proximity. A comparison of these features with other Type II SNe displaying an early interaction reveals similarities between these features and those observed in SNe 2014G and 2023ixf. We also compared the early spectra to literature models, estimating a mass-loss rate of the order of 10−3Myr−1. Radiation hydrodynamical modelling of the light curve also suggests the mass loss from the progenitor within a short period prior to explosion, totalling 0.16Mof material within 2900Rof the progenitor. Furthermore, light curve modelling infers a zero-age main sequence mass of 15Mfor the progenitor, a progenitor radius of 1031R, and an explosion energy of 1.1 × 1051erg. 
    more » « less