Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Endrullis, Jörg; Schmitz, Sylvain (Ed.)We prove that the equational theory of Kleene algebra with commutativity conditions on primitives (or atomic terms) is undecidable, thereby settling a longstanding open question in the theory of Kleene algebra. While this question has also been recently solved independently by Kuznetsov, our results hold even for weaker theories that do not support the induction axioms of Kleene algebra.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)TopKAT is the algebraic theory of Kleene algebra with tests (KAT) extended with a top element. Compared to KAT, one pleasant feature of TopKAT is that, in relational models, the top element allows us to express the domain and codomain of a relation. This enables several applications in program logics, such as proving under-approximate specifications or reachability properties of imperative programs. However, while TopKAT inherits many pleasant features of KATs, such as having a decidable equational theory, it is incomplete with respect to relational models. In other words, there are properties that hold true of all relational TopKATs but cannot be proved with the axioms of TopKAT. This issue is potentially worrisome for program-logic applications, in which relational models play a key role. In this paper, we further investigate the completeness properties of TopKAT with respect to relational models. We show that TopKAT is complete with respect to (co)domain comparison of KAT terms, but incomplete when comparing the (co)domain of arbitrary TopKAT terms. Since the encoding of under-approximate specifications in TopKAT hinges on this type of formula, the aforementioned incompleteness results have a limited impact when using TopKAT to reason about such specifications.more » « less
-
Parallel programs are frequently modeled asdependencyorcostgraphs, which can be used to detect various bugs, or simply to visualize the parallel structure of the code. However, such graphs reflect just one particular execution and are typically constructed in apost-hocmanner.Graph types, which were introduced recently to mitigate this problem, can be assigned statically to a program by a type system and compactly represent the family of all graphs that could result from the program. Unfortunately, prior work is restricted in its treatment offutures, an increasingly common and especially dynamic form of parallelism. In short, each instance of a future must be statically paired with a vertex name. Previously, this led to the restriction that futures could not be placed in collections or be used to construct data structures. Doing so is not a niche exercise: such structures form the basis of numerous algorithms that use forms of pipelining to achieve performance not attainable without futures. All but the most limited of these examples are out of reach of prior graph type systems. In this paper, we propose a graph type system that allows for almost arbitrary combinations of futures and recursive data types. We do so by indexing datatypes with a type-levelvertex structure, a codata structure that supplies unique vertex names to the futures in a data structure. We prove the soundness of the system in a parallel core calculus annotated with vertex structures and associated operations. Although the calculus is annotated, this is merely for convenience in defining the type system. We prove that it is possible to annotate arbitrary recursive types with vertex structures, and show using a prototype inference engine that these annotations can be inferred from OCaml-like source code for several complex parallel algorithms.more » « less
An official website of the United States government
