skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Azizgolshani, Hesham"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Rapid non-invasive kidney-specific readouts are essential to maximizing the potential of microfluidic tissue culture platforms for drug-induced nephrotoxicity screening. Transepithelial electrical resistance (TEER) is a well-established technique, but it has yet to be evaluated as a metric of toxicity in a kidney proximal tubule (PT) model that recapitulates the high permeability of the native tissue and is also suitable for high-throughput screening. We utilized the PREDICT96 high-throughput microfluidic platform, which has rapid TEER measurement capability and multi-flow control, to evaluate the utility of TEER sensing for detecting cisplatin-induced toxicity in a human primary PT model under both mono- and co-culture conditions as well as two levels of fluid shear stress (FSS). Changes in TEER of PT-microvascular co-cultures followed a dose-dependent trend similar to that demonstrated by lactate dehydrogenase (LDH) cytotoxicity assays and were well-correlated with tight junction coverage after cisplatin exposure. Additionally, cisplatin-induced changes in TEER were detectable prior to increases in cell death in co-cultures. PT mono-cultures had a less differentiated phenotype and were not conducive to toxicity monitoring with TEER. The results of this study demonstrate that TEER has potential as a rapid, early, and label-free indicator of toxicity in microfluidic PT-microvascular co-culture models. 
    more » « less
  2. Abstract

    Measurement of cell metabolism in moderate-throughput to high-throughput organ-on-chip (OOC) systems would expand the range of data collected for studying drug effects or disease in physiologically relevant tissue models. However, current measurement approaches rely on fluorescent imaging or colorimetric assays that are focused on endpoints, require labels or added substrates, and lack real-time data. Here, we integrated optical-based oxygen sensors in a high-throughput OOC platform and developed an approach for monitoring cell metabolic activity in an array of membrane bilayer devices. Each membrane bilayer device supported a culture of human renal proximal tubule epithelial cells on a porous membrane suspended between two microchannels and exposed to controlled, unidirectional perfusion and physiologically relevant shear stress for several days. For the first time, we measured changes in oxygen in a membrane bilayer format and used a finite element analysis model to estimate cell oxygen consumption rates (OCRs), allowing comparison with OCRs from other cell culture systems. Finally, we demonstrated label-free detection of metabolic shifts in human renal proximal tubule cells following exposure to FCCP, a drug known for increasing cell oxygen consumption, as well as oligomycin and antimycin A, drugs known for decreasing cell oxygen consumption. The capability to measure cell OCRs and detect metabolic shifts in an array of membrane bilayer devices contained within an industry standard microtiter plate format will be valuable for analyzing flow-responsive and physiologically complex tissues during drug development and disease research.

     
    more » « less