skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Azizur-Rahman, Khalifa_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Color centers in the O-band (1260–1360 nm) are crucial for realizing long-coherence quantum network nodes in memory-assisted quantum communications. However, only a limited number of O-band color centers have been thoroughly explored in silicon hosts as spin-photon interfaces. This study explores and compares two promising O-band color centers in silicon for high-fidelity spin-photon interfaces: T and *Cu (transition metal) centers. During T center generation process, we observed the formation and dissolution of other color centers, including the copper-silver related centers with a doublet line around 1312 nm (*$${{{\rm{Cu}}}}_{n}^{0}$$ Cu n 0 ), near the optical fiber zero dispersion wavelength (around 1310 nm). We then investigated the photophysics of both T and *Cu centers, focusing on their emission spectra and spin properties. The *$${{{\rm{Cu}}}}_{0}^{0}$$ Cu 0 0 line under a 0.5 T magnetic field demonstrated a 25% broadening, potentially due to spin degeneracy, suggesting that this center can be a promising alternative to T centers. 
    more » « less