skip to main content

Search for: All records

Creators/Authors contains: "Azoulay, Jason D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 28, 2024
  2. Structural supercapacitors reach high performance with a gradient electrolyte and redox polymer electrodes. 
    more » « less
    Free, publicly-accessible full text available June 23, 2024
  3. Compounds that exhibit spin-crossover (SCO) type behavior have been extensively investigated due to their ability to act as molecular switches. Depending on the coordinating ligand, in this case 1H-1,2,4-triazole, and the crystallite size of the SCO compound produced, the energy requirement for the spin state transition can vary. Here, SCO [Fe(Htrz)2(trz)](BF4)] nanoparticles were synthesized using modified reverse micelle methods. Reaction conditions and reagent ratios are strictly controlled to produce nanocubes of 40–50 nm in size. Decreases in energy requirements are seen in both thermal and magnetic transitions for the smaller sized crystallites, where, compared to bulk materials, a decrease of as much as 20 °C can be seen in low to high spin state transitions. 
    more » « less
  4. Abstract

    Photodetectors operating across the near‐ to short‐wave infrared (NIR–SWIR,λ= 0.9–1.8 µm) underpin modern science, technology, and society. Organic photodiodes (OPDs) based on bulk‐heterojunction (BHJ) active layers overcome critical manufacturing and operating drawbacks inherent to crystalline inorganic semiconductors, offering the potential for low‐cost, uncooled, mechanically compliant, and ubiquitous infrared technologies. A constraining feature of these narrow bandgap materials systems is the high noise current under an applied bias, resulting in specific detectivities (D*, the figure of merit for detector sensitivity) that are too low for practical utilization. Here, this study demonstrates that incorporating wide‐bandgap insulating polymers within the BHJ suppresses noise by diluting the transport and trapping sites as determined using capacitance‐frequency analysis. The resultingD*of NIR–SWIR OPDs operating from 600–1400 nm under an applied bias of −2 V is improved by two orders of magnitude, from 108to 1010 Jones (cm Hz1/2 W−1), when incorporating polysulfone within the blends. This broadly applicable strategy can reduce noise in IR‐OPDs enabling their practical operation and the realization of emerging technologies.

    more » « less