- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Burger, Alexa (2)
-
Bötschi, Seraina (2)
-
Kemmler, Cassie L. (2)
-
Moran, Hannah R. (2)
-
Mosimann, Christian (2)
-
Affolter, Markus (1)
-
Bertho, Sylvain (1)
-
Betz, Charles (1)
-
Braasch, Ingo (1)
-
Burger, Sibylle (1)
-
Czarkwiani, Anna (1)
-
D'Agati, Gianluca (1)
-
Ditrychova, Karolina (1)
-
Eckert, Rachel L. (1)
-
Farley, Emma (1)
-
Felker, Anastasia (1)
-
Fitch, Olivia E. (1)
-
Hermosilla Aguayo, Viviana (1)
-
Klem, John R. (1)
-
Knapp, Dunja (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The cell type-specific expression of key transcription factors is central to development and disease.Brachyury/T/TBXTis a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalianBrachyury/T/TBXTgene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three conservedBrachyury-controlling notochord enhancers,T3,C, andI, in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers,in cisdeletion of all three enhancers in mouse abolishes Brachyury/T/Tbxt expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. The threeBrachyury-driving notochord enhancers are conserved beyond mammals in thebrachyury/tbxtbloci of fishes, dating their origin to the last common ancestor of jawed vertebrates. Our data define the vertebrate enhancers forBrachyury/T/TBXTBnotochord expression through an auto-regulatory mechanism that conveys robustness and adaptability as ancient basis for axis development.more » « less
-
Kemmler, Cassie L.; Moran, Hannah R.; Murray, Brooke F.; Scoresby, Aaron; Klem, John R.; Eckert, Rachel L.; Lepovsky, Elizabeth; Bertho, Sylvain; Nieuwenhuize, Susan; Burger, Sibylle; et al (, Development)ABSTRACT Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible modular system. Here, we establish several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2 and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3′ vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Finally, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker that is active before hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish and other models.more » « less
An official website of the United States government
